Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of the different cork stoppers and sulfur dose in champagne quality

Influence of the different cork stoppers and sulfur dose in champagne quality

Abstract

As is well known, Champagne is a product of the highest quality recognized in the international market. Champagne is a type of sparkling wine made in the Champagne region (France) using the traditional method of champenoise. Aging in the bottle is the final stage before being consumed, and it is considered a time of maturation in which many chemical and sensory changes occur (1). In addition, the stoppers have a very important influence on the quality of the product during bottle aging (2). Today there are different types of corks with different types of oxygen permeabilities (3). This oxygen transfer rate (OTR) through the cork can cause changes in the color, in the aromatic composition and in the organoleptic sensations of the Champagne, causing a loss of its quality (3, 4). For all these reasons, the main objective of this work is to evaluate the effect of different types of cork stoppers in Champagne with different doses of sulfur (added in bottling) for a year. To carry out the study, five types of corks (C1, C2, C3, C4 and C5) with increasing OTRs values and the control with sheet metal closure (Control), and three different doses of sulfur (0, 10 and 20 mg/L) were used. Of all of them, the basic parameters, color and Cielab coordinates, CO2 pressure, aromatic composition (fermentative, oxidative and reduction aromas), and sensory analysis were analyzed at each of the four sampling points. The analysis times were after bottling (T0) and after 3, 6, 12 months of aging in the bottle (T3, T6, T12). The results showed that the parameter ‘time’ was the main factor in producing differences between the samples, followed by the doses of sulfur and type of cork. In general, the basic parameters of champagne did not show significant differences except for total sulfur content. In general, the color, the CO2 parameters and especially the aromatic composition changed over time, showing the main changes after 12 months in the bottle. The fermentation aromas were decreasing, and the oxidation and reduction aromas were increasing over time. The samples with the highest dose of sulfur (20 mg/L) were less evolved, however they showed greater reductions. In addition, C5 and C3 corks with were the corks that best preserved Champagne in relation to the preservation of fermentative aromas, and in achieving a better balance between oxidation-reduction conditions, after 12 months of aging. However, the C2 was the cork that had the worst preservation of fermentative aromas and the greatest oxidation caused the Champagne. Finally, the sensory analysis on time 12 months corroborated analytics, the best valued Champagne being those closed with C3 and C5 corks, and the worst with C2. Therefore, a good choice about the type of cork and the dose of sulfur in bottling can prolong its optimal moment of consumption in time, while preserving its quality.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ana Maria Mislata 

1. VITEC – Centre Tecnològic del Vi, Ctra. Porrera Km 1, 43730 Falset (Tarragona), Spain 2. Instrumental Sensometry (i-Sens), Department of Analytical Chemistry and Organic  Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Tarragona, 43007, Spain ,Michelle Rodríguez 2; Christophe Loisel 3; Miquel Puxeu 1; Enric Nart 1; Sergi De Lamo 1; Montserrat Mestres 2 and Raúl Ferrer-Gallego 1  1. VITEC – Centre Tecnològic del Vi, Ctra. Porrera Km.1, 43730 Falset (Tarragona), Spain 2. Instrumental Sensometry (i-Sens), Department of Analytical Chemistry and Organic  Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Tarragona, 43007, Spain 3. DIAM Bouchage SAS-Espace Tech Ulrich, 66400 Ceret, France

Contact the author

Keywords

champagne, corks, sulfurous, otr, color, aromatic compounds, sensory analysis

Citation

Related articles…

Low and zero alcohol “wines”: impact of different dealcoholization processes on phenol profile and health benefits

Consumers’ demand for non-alcoholic wine has notably increased in the last years: this trend is a consequence of a growing interest in more healthy habits, and as a response to higher alcohol levels in wine due to climate change. In addition, drinking limitations due to physiological/pathological conditions (e.g., pregnancy, diabetes, hepatic disorders), driving regulations, ethical/religious considerations, and high import taxes on alcoholic beverages have positively influenced this marked (us$ 1.6 billion in 2021). International organisation of vine and wine (OIV) established that alcohol content defining wines must not be less than 8.5% vol, (OIV, 2017).

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

Seasonal variations and climate interactions with phenolic extractability of Pinot noir across the whole winemaking process

Context and Purpose of the Study. A deeper understanding of the relationship between weather conditions and wine quality is essential for assessing the impact of climate change and developing effective adaptation strategies.

Contribution of seeds to red wine phenolic composition

Tannin composition is an important attribute in red wine quality, and it is therefore critical to understand the factors influencing tannin extraction during alcoholic fermentation. Tannins contribute to the mouthfeel of wines, but they also form pigmented polymers...