Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of the different cork stoppers and sulfur dose in champagne quality

Influence of the different cork stoppers and sulfur dose in champagne quality

Abstract

As is well known, Champagne is a product of the highest quality recognized in the international market. Champagne is a type of sparkling wine made in the Champagne region (France) using the traditional method of champenoise. Aging in the bottle is the final stage before being consumed, and it is considered a time of maturation in which many chemical and sensory changes occur (1). In addition, the stoppers have a very important influence on the quality of the product during bottle aging (2). Today there are different types of corks with different types of oxygen permeabilities (3). This oxygen transfer rate (OTR) through the cork can cause changes in the color, in the aromatic composition and in the organoleptic sensations of the Champagne, causing a loss of its quality (3, 4). For all these reasons, the main objective of this work is to evaluate the effect of different types of cork stoppers in Champagne with different doses of sulfur (added in bottling) for a year. To carry out the study, five types of corks (C1, C2, C3, C4 and C5) with increasing OTRs values and the control with sheet metal closure (Control), and three different doses of sulfur (0, 10 and 20 mg/L) were used. Of all of them, the basic parameters, color and Cielab coordinates, CO2 pressure, aromatic composition (fermentative, oxidative and reduction aromas), and sensory analysis were analyzed at each of the four sampling points. The analysis times were after bottling (T0) and after 3, 6, 12 months of aging in the bottle (T3, T6, T12). The results showed that the parameter ‘time’ was the main factor in producing differences between the samples, followed by the doses of sulfur and type of cork. In general, the basic parameters of champagne did not show significant differences except for total sulfur content. In general, the color, the CO2 parameters and especially the aromatic composition changed over time, showing the main changes after 12 months in the bottle. The fermentation aromas were decreasing, and the oxidation and reduction aromas were increasing over time. The samples with the highest dose of sulfur (20 mg/L) were less evolved, however they showed greater reductions. In addition, C5 and C3 corks with were the corks that best preserved Champagne in relation to the preservation of fermentative aromas, and in achieving a better balance between oxidation-reduction conditions, after 12 months of aging. However, the C2 was the cork that had the worst preservation of fermentative aromas and the greatest oxidation caused the Champagne. Finally, the sensory analysis on time 12 months corroborated analytics, the best valued Champagne being those closed with C3 and C5 corks, and the worst with C2. Therefore, a good choice about the type of cork and the dose of sulfur in bottling can prolong its optimal moment of consumption in time, while preserving its quality.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ana Maria Mislata 

1. VITEC – Centre Tecnològic del Vi, Ctra. Porrera Km 1, 43730 Falset (Tarragona), Spain 2. Instrumental Sensometry (i-Sens), Department of Analytical Chemistry and Organic  Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Tarragona, 43007, Spain ,Michelle Rodríguez 2; Christophe Loisel 3; Miquel Puxeu 1; Enric Nart 1; Sergi De Lamo 1; Montserrat Mestres 2 and Raúl Ferrer-Gallego 1  1. VITEC – Centre Tecnològic del Vi, Ctra. Porrera Km.1, 43730 Falset (Tarragona), Spain 2. Instrumental Sensometry (i-Sens), Department of Analytical Chemistry and Organic  Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Tarragona, 43007, Spain 3. DIAM Bouchage SAS-Espace Tech Ulrich, 66400 Ceret, France

Contact the author

Keywords

champagne, corks, sulfurous, otr, color, aromatic compounds, sensory analysis

Citation

Related articles…

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during
sparkling wine tasting.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

The impact of delayed grapevine budbreak on lemberger wine sensory compounds under variable weather conditions

Spring freeze events threaten grape production globally. As grape buds emerge from dormancy in spring, freezing temperatures have the potential to damage green tissues, decreasing yield potential and compromising fruit quality by harvest.

Optimization of aroma production in grape cell suspensions induced by chemical elicitor

Methyl-jasmonate (MeJA) induces the production of at least 25 compounds with sesquiterpene- like mass spectra in ‘Cabernet sauvignon’. Tost effective concentration of MeJA in stimulating the production of sesquiterpenes was found to be 500 µM if added when the cell suspensions had a PCV of 35 %, and 1000 if added when the cell suspensions had a PCV of 70 %.

First results obtained with a terrain model to characterize the viticultural «terroirs» in Anjou (France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation.