Macrowine 2021
IVES 9 IVES Conference Series 9 First identification of a glycosylated fraction involved in mushroom-off-flavor in grapes: influence of B. cinerea, powdery mildew and C. subabruptus

First identification of a glycosylated fraction involved in mushroom-off-flavor in grapes: influence of B. cinerea, powdery mildew and C. subabruptus

Abstract

An organoleptic defect, called fresh mushrooms off-flavor, appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, octan-3-ol and octen-3-ol (C8 compounds) were involved in the mushroom off-flavor in wines (Pallotta et al., 1998), (Darriet et al., 2002). Botrytis cinerea and other moldsplayed a role in the metabolism of such molecules directly on the grapes (La Guerche et al., 2006). Moreover, producers couldn’t detect this off-flavor in must but it appeared only in finished wines and the intensity can vary considerably during ageing of wines. Several biogenesis pathways have been proposed to explain the mushroom off-flavor in foods. In the fungus kingdom, the formation of C8 molecules came from the transformation of linoleic acid under the action of several enzymes (Wurzenberger & Grosch, 1984). Glycosidic precursors of octen-3-ol have been identified in several plants such as recently in soybean (Matsui et al., 2018). However, under oenological conditions, no clear mechanism has been established yet. AIM: So, the aim of this work was to (i) identify glycosidic precursors of C8 compounds and (ii) to evaluate the influence of different rots on the glycosylated fractions of different grape varieties. For this purpose, we studied different grades of rot defined by visual intensity (healthy, 1-5%, 10-15% and 20-25% of rots) of grapes and musts of Meunier, Pinot noir and Chardonnay affected by Botrytis cinerea, Powdery mildew and Crustomyces subabruptus. METHODS: From analytical point of view, glycosylated precursors were extracted on C18 cartridges (Lichlorut RP-18, 500 mg),then cleaved by a beta-glycosidase enzyme (Rapidase Revelation Aroma, 40°C, Overnight) and aglycones were analyzed byGC-MS (FS and SIM mode) as reported by Schneider in 2001. RESULTS: For the first time, we identified a glycosylated fraction able to release fresh mushroom aroma (octen-3-one, octen-3-ol, octan-3-ol) in Meunier and Pinot noir musts. Indeed, contaminated musts of Pinot noir treated by beta glucosidase enzyme released three times more octen-3-one than control. In the samples infected with Powdery mildew, we didn’t observe any production of these glycosides. Botrytis cinerea seemed to decrease the level of octen-3-one glycoside(s) as soon as level contamination reached at least 1%. Finally, a Pinot noir must contaminated by Crustomyces subabruptus involved an increase of the glycosylated fraction responsible for the octen-3-one by 31% in comparison with uncontaminated sample. CONCLUSION: In conclusion, the identification of a glycosylated fraction able to release fresh mushroom aroma compounds opens avenue to better understand the source of this specific taint and constitutes the first step to help winemakers to avoid off-flavor.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Léa Delcros 

MHCS, Comité Champagne, Epernay, France,Teddy GODDET, SPO, Univ Montpellier INRAE, Institut agro, Montpellier, France  Sylvie COLLAS, Comité Champagne, Epernay, France  Marion HERVE, MHCS, Epernay, France  Bruno BLONDIN, SPO, Univ Montpellier INRAE, Institut agro, Montpellier, France  Aurélie ROLAND, SPO, Univ Montpellier, INRAE, Institut agro, Montpellier, France

Contact the author

Keywords

octen-3-one, octen-3-ol, glycosides, mushroom off-flavor, wine, botrytis cinerea, powdery mildew, crustomyces subabruptus

Citation

Related articles…

The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

Wine-grapes in the Willamette Valley, Oregon, are grown on three major soil parent materials: volcanic, marine sediments, and loess/volcanic.

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Two treatments were studied in vines of cv. Tempranillo blanco (Vitis vinifera L.) during the 2012-2018 period in an experimental plot located in Rincón de Soto (La Rioja, Spain). Rainfed treatment (R0) was compared with respect to an irrigation treatment (R2) equivalent to 30% of the crop evapotranspiration (ET0) from fruitset to harvest phenological stages. Pre-veraison irrigation ranged from 43 (2014) to 66 mm/m2 (2018) while post-veraison irrigation ranged from 37 (2017) to 115 mm/m2 (2012).The normalized difference vegetation index (NDVI) was assessed by measures of reflectance, nutrients were determined by analysis of petioles sampled at veraison, grape production was determined at harvest as well as renewable wood weight was assessed at pruning time.

Unravelling the mystery of drought tolerance confered by rootstocks

Climate change will increase the frequency of water deficit experienced in certain european regions, due to increased evapotranspiration and reduced rainfall during the growing cycle. We therefore need to find ways of adaption, including the use of more drought-tolerant planting material. In addition to the varieties used as grafts and involved in the wine ypicity of our wines, rootstocks selection is a relevant way of adapting to more restrictive environmental conditions.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Macrowine 2021
IVES 9 IVES Conference Series 9 First identification of a glycosylated fraction involved in mushroom-off-flavor in grapes: influence of B. cinerea, powdery mildew and C. subabruptus

First identification of a glycosylated fraction involved in mushroom-off-flavor in grapes: influence of B. cinerea, powdery mildew and C. subabruptus

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: September 14, 2021

Issue: (ex: Issue: Terclim 2023)

Type: typeofpublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

Citation

Related articles…

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Zonificación vitícola y aplicación a la D.O. Montilla-Moriles, usando como referencia la variedad ‘Pedro Ximenes’

Se señalaron 28 parcelas, en la zona de D.O. Montilla-Moriles, repartidas por toda la superficie de viñedo, de ellas 12 se localizan en las Zonas de calidad Superior, en los términos municipales de Montilla

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1].

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.