Macrowine 2021
IVES 9 IVES Conference Series 9 Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Abstract

AIM: Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH, we wanted to compare for the same initial must (given composition in polysaccharides, polyphenols, ions, _) the impact of the pH on the protein composition after fermentation. Several white wine varieties were considered.

METHODS: Vinifications were carried out using musts from Sauvignon, Muscat, Sylvaner, Riesling, Gewurztrminer, and Pinot Gris). The pH of the initial musts was adjusted to 3.0, 3.3, 3.6 and 3.9. For each wine thus obtained, heat tests (heating at 40°C for 4 hours) were carried out and proteins were analyzed and quantified by gel electrophoresis.

RESULTS: On the whole, protein concentrations in wines decreased during fermentation. However, this decrease was more marked for the lowest pH (3.0 and 3.3), as well as for some proteins (chitinases, b-glucanases). Thus the total concentration of proteins was higher at pH 3.9. The turbidity measured after heat tests evolved differently: a maximum was observed at pH 3.6 in the present experimental conditions (40°C- 4h).

CONCLUSIONS

This study confirms that the pH has a decisive impact on the protein composition in white wines, with higher pH favoring their conformational stability during winemaking. However, haze formation due to heat-induced denaturation of proteins is higher at high pH. This trend was observed whatever the studied variety, but with more or less haze intensities. This indicated also an impact of non-protein compounds, whose composition strongly depends on the grape variety.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Céline Poncet-Legrand 

INRAE,Eric MEISTERMANN, IFV Aude VERNHET, Institut Agro, Montpellier SupAgro Philippe COTTEREAU, IFV Frédéric CHARRIER, IFV  Patrick CHEMARDIN, INRAE Céline PONCET-LEGRAND, INRAE

Contact the author

Keywords

white wines, haze formation, proteins, pH

Citation

Related articles…

Inactivated yeasts: a case study for the future of precision enology

Yeasts serve as highly versatile tools in oenology. They do more than just perform alcoholic fermentation. Nowadays, yeasts from various species, naturally present in grapes, are selected for specific non-fermentative applications. For example, the use of selected non-saccharomyces at the early stage of winemaking has become a common practice to limit the growth of unwanted microorganisms. When inactivated, yeasts can be fractionated into soluble and insoluble fractions providing a wide range of benefits related to structural components or specific metabolites.

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain

Insulative effects of vine shelters may impact growth potential and cold hardiness of young vines

Context and purpose of the study. The seasons immediately following planting are key growth stages where young vines are particularly susceptible to various forms of damage.

Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

One of the major problems affecting the viticulture sector is the quantity of plant protection products (especially copper) used to control the main foliar diseases of the vine. The Life Green Grapes project enter in the production context with the aim of reducing the use of fungicides throughout

Analysis of primary, secondary and tertiary aromas in Vitis vinifera L. Syrah wines with an extemporaneous production cycle in two regions of São Paulo – Brazil, using GC-MS

The aromatic perception is one of the main factors that influence the
consumer when determining the wine’s quality and acceptance. Numerous factors (soil, climate,
winemaking style, cultivar) can influence the volatile compounds. Some of these compounds are released directly from the grape berries while others are formed during the fermentation and aging processes. However, little is known about the quality and aromatic formation of Syrah variety in the winter cycle cultivated in São Paulo.