Macrowine 2021
IVES 9 IVES Conference Series 9 Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Abstract

AIM: Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH, we wanted to compare for the same initial must (given composition in polysaccharides, polyphenols, ions, _) the impact of the pH on the protein composition after fermentation. Several white wine varieties were considered.

METHODS: Vinifications were carried out using musts from Sauvignon, Muscat, Sylvaner, Riesling, Gewurztrminer, and Pinot Gris). The pH of the initial musts was adjusted to 3.0, 3.3, 3.6 and 3.9. For each wine thus obtained, heat tests (heating at 40°C for 4 hours) were carried out and proteins were analyzed and quantified by gel electrophoresis.

RESULTS: On the whole, protein concentrations in wines decreased during fermentation. However, this decrease was more marked for the lowest pH (3.0 and 3.3), as well as for some proteins (chitinases, b-glucanases). Thus the total concentration of proteins was higher at pH 3.9. The turbidity measured after heat tests evolved differently: a maximum was observed at pH 3.6 in the present experimental conditions (40°C- 4h).

CONCLUSIONS

This study confirms that the pH has a decisive impact on the protein composition in white wines, with higher pH favoring their conformational stability during winemaking. However, haze formation due to heat-induced denaturation of proteins is higher at high pH. This trend was observed whatever the studied variety, but with more or less haze intensities. This indicated also an impact of non-protein compounds, whose composition strongly depends on the grape variety.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Céline Poncet-Legrand 

INRAE,Eric MEISTERMANN, IFV Aude VERNHET, Institut Agro, Montpellier SupAgro Philippe COTTEREAU, IFV Frédéric CHARRIER, IFV  Patrick CHEMARDIN, INRAE Céline PONCET-LEGRAND, INRAE

Contact the author

Keywords

white wines, haze formation, proteins, pH

Citation

Related articles…

“Zonation”: interpretation and estimation of “Great zonation” (GZ) following the base methodology of “GRANDE FILIERA” (GF) (Great chain)

Dans des travaux précédents sur le zonage, on a traité de la « Grande Filière », du « terroir », du « territoire », de la «″Terra »″ (« Terre »”), des « Petits zonages ou sub-zonages », du « Grand Zonage », de la qualité (nous en avons classifié plus de quatre-vingt-dix), des « Grands Objectifs » (GO) de l’activité vitivinicole et des moyens utilisés pour les atteindre. Dans le « GRAND ZONAGE » (GZ) nous avons précisé que pour zoner, nous partons des aspects

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl
compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance

How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

European regulations describe what elements must be given in the specifications of DPO determination ; mainly production conditions, links between quality and products characteristics and the physical traits of the production area. These elements are given in the “link to terroir” paragraph relating natural and human factors, detailed product characteristics linked to the geographical area and at last interactions between product originality and the geographical area.

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass