Macrowine 2021
IVES 9 IVES Conference Series 9 Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Abstract

AIM: Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH, we wanted to compare for the same initial must (given composition in polysaccharides, polyphenols, ions, _) the impact of the pH on the protein composition after fermentation. Several white wine varieties were considered.

METHODS: Vinifications were carried out using musts from Sauvignon, Muscat, Sylvaner, Riesling, Gewurztrminer, and Pinot Gris). The pH of the initial musts was adjusted to 3.0, 3.3, 3.6 and 3.9. For each wine thus obtained, heat tests (heating at 40°C for 4 hours) were carried out and proteins were analyzed and quantified by gel electrophoresis.

RESULTS: On the whole, protein concentrations in wines decreased during fermentation. However, this decrease was more marked for the lowest pH (3.0 and 3.3), as well as for some proteins (chitinases, b-glucanases). Thus the total concentration of proteins was higher at pH 3.9. The turbidity measured after heat tests evolved differently: a maximum was observed at pH 3.6 in the present experimental conditions (40°C- 4h).

CONCLUSIONS

This study confirms that the pH has a decisive impact on the protein composition in white wines, with higher pH favoring their conformational stability during winemaking. However, haze formation due to heat-induced denaturation of proteins is higher at high pH. This trend was observed whatever the studied variety, but with more or less haze intensities. This indicated also an impact of non-protein compounds, whose composition strongly depends on the grape variety.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Céline Poncet-Legrand 

INRAE,Eric MEISTERMANN, IFV Aude VERNHET, Institut Agro, Montpellier SupAgro Philippe COTTEREAU, IFV Frédéric CHARRIER, IFV  Patrick CHEMARDIN, INRAE Céline PONCET-LEGRAND, INRAE

Contact the author

Keywords

white wines, haze formation, proteins, pH

Citation

Related articles…

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Modelisation of the microclimatical parameters for the viticultural ”terroirs”characterization of “Canton de Vaud” (Switzerland)

Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un modèle du microclimat intégrant température, relief, éclairement et pluviométrie a été conçu.

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.