Macrowine 2021
IVES 9 IVES Conference Series 9 Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Abstract

AIM: Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH, we wanted to compare for the same initial must (given composition in polysaccharides, polyphenols, ions, _) the impact of the pH on the protein composition after fermentation. Several white wine varieties were considered.

METHODS: Vinifications were carried out using musts from Sauvignon, Muscat, Sylvaner, Riesling, Gewurztrminer, and Pinot Gris). The pH of the initial musts was adjusted to 3.0, 3.3, 3.6 and 3.9. For each wine thus obtained, heat tests (heating at 40°C for 4 hours) were carried out and proteins were analyzed and quantified by gel electrophoresis.

RESULTS: On the whole, protein concentrations in wines decreased during fermentation. However, this decrease was more marked for the lowest pH (3.0 and 3.3), as well as for some proteins (chitinases, b-glucanases). Thus the total concentration of proteins was higher at pH 3.9. The turbidity measured after heat tests evolved differently: a maximum was observed at pH 3.6 in the present experimental conditions (40°C- 4h).

CONCLUSIONS

This study confirms that the pH has a decisive impact on the protein composition in white wines, with higher pH favoring their conformational stability during winemaking. However, haze formation due to heat-induced denaturation of proteins is higher at high pH. This trend was observed whatever the studied variety, but with more or less haze intensities. This indicated also an impact of non-protein compounds, whose composition strongly depends on the grape variety.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Céline Poncet-Legrand 

INRAE,Eric MEISTERMANN, IFV Aude VERNHET, Institut Agro, Montpellier SupAgro Philippe COTTEREAU, IFV Frédéric CHARRIER, IFV  Patrick CHEMARDIN, INRAE Céline PONCET-LEGRAND, INRAE

Contact the author

Keywords

white wines, haze formation, proteins, pH

Citation

Related articles…

What practices in the vineyard lead to the production of wines that consistently win medals?

High quality wines start in the vineyard however little is known about the role vineyard management practices play in this quality outcome. Gold medals and well-known regionality increase consumer preference for purchasing a wine. An increase in the former will certainly also drive an increase in the latter and therefore practices in production that consistently lead to gold medal winning wines will improve both the marketability of the region and its products. It is argued that vinification is the main driver of wine quality and in fact, the presence of some oak compounds is a well-known consumer and expert mark of quality. However, only select wines are vinified in oak and therefore the original grape quality at the winery door must in fact drive all further downstream vinification decisions.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Proseccco is a famous italian Protected Designation of Origin (PDO) produced in two regions: Veneto e Friuli Venezia Giulia, however, the production is mainly concentrated in the province of Treviso. These territories are characterized by plains with some hilly areas and temperate climate. Its Production regulation provides a minimum utilization of 85% of Glera grapes, a local white grape variety, and up to a maximum of 15% of other local and international varieties. Prosecco second fermentation takes place, according to the Charmat method, in autoclaves.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.