Macrowine 2021
IVES 9 IVES Conference Series 9 Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Abstract

AIM: Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH, we wanted to compare for the same initial must (given composition in polysaccharides, polyphenols, ions, _) the impact of the pH on the protein composition after fermentation. Several white wine varieties were considered.

METHODS: Vinifications were carried out using musts from Sauvignon, Muscat, Sylvaner, Riesling, Gewurztrminer, and Pinot Gris). The pH of the initial musts was adjusted to 3.0, 3.3, 3.6 and 3.9. For each wine thus obtained, heat tests (heating at 40°C for 4 hours) were carried out and proteins were analyzed and quantified by gel electrophoresis.

RESULTS: On the whole, protein concentrations in wines decreased during fermentation. However, this decrease was more marked for the lowest pH (3.0 and 3.3), as well as for some proteins (chitinases, b-glucanases). Thus the total concentration of proteins was higher at pH 3.9. The turbidity measured after heat tests evolved differently: a maximum was observed at pH 3.6 in the present experimental conditions (40°C- 4h).

CONCLUSIONS

This study confirms that the pH has a decisive impact on the protein composition in white wines, with higher pH favoring their conformational stability during winemaking. However, haze formation due to heat-induced denaturation of proteins is higher at high pH. This trend was observed whatever the studied variety, but with more or less haze intensities. This indicated also an impact of non-protein compounds, whose composition strongly depends on the grape variety.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Céline Poncet-Legrand 

INRAE,Eric MEISTERMANN, IFV Aude VERNHET, Institut Agro, Montpellier SupAgro Philippe COTTEREAU, IFV Frédéric CHARRIER, IFV  Patrick CHEMARDIN, INRAE Céline PONCET-LEGRAND, INRAE

Contact the author

Keywords

white wines, haze formation, proteins, pH

Citation

Related articles…

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Exploring the inhibitor effect of different commercial chitosan-based preparations on malolactic fermentation in rosé wine

Chitosan is a natural polymer of β-D-linked N-acetyl-D-glucosamine units (1,2), that has only recently been approved by OIV for its use in winemaking to help with microbial control, metal chelation, clarification, and reducing contaminants.

Effect of pre-fermentative cold soaking and use of different enzymes on the chemical and sensory properties of Catarratto wines

The wine industry widely recognizes that early-harvested grapes or those with uneven ripeness at harvest can produce wines with an “unripe fruit” mouthfeel [1,2]. Despite this, it is still unknown which compounds cause these sensory flaws or the most effective winemaking techniques to address them.