Macrowine 2021
IVES 9 IVES Conference Series 9 Application of uv-led in wine as an alternative to sulphur dioxide

Application of uv-led in wine as an alternative to sulphur dioxide

Abstract

Sulfites (SO2) are commonly used in the wine industry to preserve products during storage for antiseptic and antioxidant purposes (Oliveira et al., 2011). However, the presence of sulfites at varying concentrations has been linked to allergic reactions in some consumers, such as dermatitis, urticaria, abdominal pain, among others (Vally & Thompson, 2001). UV-LED irradiation has been is an attractive technology of non-thermal nature and is an alternative to partially or totally replace the addition of SO2 to wine, due to its antimicrobial effect (Conner et al., 1998; Falguera et al., 2013). In this study, the effect of the UV-LED irradiation on the activity of Acetobacter aceti ATCC 15973 of white wine (Sauvignon blanc) and red wine (Pinot noir) was evaluated. A laboratory scale static UV LED irradiation system was designed, composed of four diodes with wavelengths of 278 nm (8-12 mW), 275 nm (3-5 mW) and 265 nm (1-3 mW) and irradiation times of 10, 20 and 30 min. The results indicate that irradiation at a wavelength of 278 nm for 30 minutes completely eliminated the A. aceti concentration (CFU/ml) in white wine. Irradiation of white wine at wavelengths of 275 and 265 nm for 30 min resulted in a logarithmic reduction of approximately 2.4. UV-LED irradiation processing of red wine was not as efficacious in eliminating A. aceti (CFU/ml), however, a logarithmic reduction of 4 was evidenced over 30 min. Therefore, the results obtained from the static UV LED irradiation process for white wine (Sauvignon blanc) and red wine (Pinot noir) showed that with diodes at a wavelength of 278 nm and a time of 30 min, the concentration of A. aceti ATCC 15973 was significantly reduced, which is relevant to control to maintain the quality of the wines. Furthermore, this technology could be an advantageous alternative to avoid the excessive use of sulphites in wine products. The effect on the final quality aspects of wine needs to be further clarified.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fernando Salazar

Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile,Sebastián Pizarro, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Mariela Labbé, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Ismael Kasahara, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile  Felipe Aguilar, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile Pablo Ulloa, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile Liliana Godoy, Departamento de Fruticultura y Enología. Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile

Contact the author

Keywords

uv-led irradiation, acetobacter aceti (atcc 15973), sulphur dioxide, wines

Citation

Related articles…

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.