Macrowine 2021
IVES 9 IVES Conference Series 9 Application of uv-led in wine as an alternative to sulphur dioxide

Application of uv-led in wine as an alternative to sulphur dioxide

Abstract

Sulfites (SO2) are commonly used in the wine industry to preserve products during storage for antiseptic and antioxidant purposes (Oliveira et al., 2011). However, the presence of sulfites at varying concentrations has been linked to allergic reactions in some consumers, such as dermatitis, urticaria, abdominal pain, among others (Vally & Thompson, 2001). UV-LED irradiation has been is an attractive technology of non-thermal nature and is an alternative to partially or totally replace the addition of SO2 to wine, due to its antimicrobial effect (Conner et al., 1998; Falguera et al., 2013). In this study, the effect of the UV-LED irradiation on the activity of Acetobacter aceti ATCC 15973 of white wine (Sauvignon blanc) and red wine (Pinot noir) was evaluated. A laboratory scale static UV LED irradiation system was designed, composed of four diodes with wavelengths of 278 nm (8-12 mW), 275 nm (3-5 mW) and 265 nm (1-3 mW) and irradiation times of 10, 20 and 30 min. The results indicate that irradiation at a wavelength of 278 nm for 30 minutes completely eliminated the A. aceti concentration (CFU/ml) in white wine. Irradiation of white wine at wavelengths of 275 and 265 nm for 30 min resulted in a logarithmic reduction of approximately 2.4. UV-LED irradiation processing of red wine was not as efficacious in eliminating A. aceti (CFU/ml), however, a logarithmic reduction of 4 was evidenced over 30 min. Therefore, the results obtained from the static UV LED irradiation process for white wine (Sauvignon blanc) and red wine (Pinot noir) showed that with diodes at a wavelength of 278 nm and a time of 30 min, the concentration of A. aceti ATCC 15973 was significantly reduced, which is relevant to control to maintain the quality of the wines. Furthermore, this technology could be an advantageous alternative to avoid the excessive use of sulphites in wine products. The effect on the final quality aspects of wine needs to be further clarified.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fernando Salazar

Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile,Sebastián Pizarro, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Mariela Labbé, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Ismael Kasahara, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile  Felipe Aguilar, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile Pablo Ulloa, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile Liliana Godoy, Departamento de Fruticultura y Enología. Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile

Contact the author

Keywords

uv-led irradiation, acetobacter aceti (atcc 15973), sulphur dioxide, wines

Citation

Related articles…

Red wine extract and resveratrol from grapevines could counteract AMD by inhibiting angiogenesis promoted by VEGF pathway in human retinal cells

Age-related macular degeneration (AMD) that is the main cause of visual impairment and blindness in Europe which is characterized by damages in the central part of the retina, the macula. This degenerative disease of the retina is mainly due to the molecular mechanism involving the production and secretion of vascular endothelial growth factor (VEF). Despite therapeutic advances thanks

Entre ce que les consommateurs disent, ce qu’ils apprécient et ce qu’ils achètent… où se situent les vins de chasselas ?

Originaire du bassin lémanique, le chasselas est l’emblème de la viticulture suisse. Pour autant, les surfaces de chasselas n’ont cessé de diminuer, passant de 6’585 hectares en 1986 à près de 3’600 aujourd’hui, reflet d’une baisse de consommation. Une récente étude a cherché à comprendre les raisons de ce désintérêt. Réalisée dans

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

Exploring the dynamic between yeast mannoproteins structure and wine stability

Mannoproteins are macromolecules found on the surface of yeast cells, composed of hyperbranched polysaccharide negatively charged chains by mannosyl-phosphate groups, fixed to a protein core. during the alcoholic fermentation and aging on lees, these mannoproteins are released from the yeast cell wall and become the main yeast-sourced polysaccharide in wine. due to their techno-functional properties, commercial preparations of mannoproteins can be used as additives to better assure tartaric and protein stability.