Macrowine 2021
IVES 9 IVES Conference Series 9 Application of uv-led in wine as an alternative to sulphur dioxide

Application of uv-led in wine as an alternative to sulphur dioxide

Abstract

Sulfites (SO2) are commonly used in the wine industry to preserve products during storage for antiseptic and antioxidant purposes (Oliveira et al., 2011). However, the presence of sulfites at varying concentrations has been linked to allergic reactions in some consumers, such as dermatitis, urticaria, abdominal pain, among others (Vally & Thompson, 2001). UV-LED irradiation has been is an attractive technology of non-thermal nature and is an alternative to partially or totally replace the addition of SO2 to wine, due to its antimicrobial effect (Conner et al., 1998; Falguera et al., 2013). In this study, the effect of the UV-LED irradiation on the activity of Acetobacter aceti ATCC 15973 of white wine (Sauvignon blanc) and red wine (Pinot noir) was evaluated. A laboratory scale static UV LED irradiation system was designed, composed of four diodes with wavelengths of 278 nm (8-12 mW), 275 nm (3-5 mW) and 265 nm (1-3 mW) and irradiation times of 10, 20 and 30 min. The results indicate that irradiation at a wavelength of 278 nm for 30 minutes completely eliminated the A. aceti concentration (CFU/ml) in white wine. Irradiation of white wine at wavelengths of 275 and 265 nm for 30 min resulted in a logarithmic reduction of approximately 2.4. UV-LED irradiation processing of red wine was not as efficacious in eliminating A. aceti (CFU/ml), however, a logarithmic reduction of 4 was evidenced over 30 min. Therefore, the results obtained from the static UV LED irradiation process for white wine (Sauvignon blanc) and red wine (Pinot noir) showed that with diodes at a wavelength of 278 nm and a time of 30 min, the concentration of A. aceti ATCC 15973 was significantly reduced, which is relevant to control to maintain the quality of the wines. Furthermore, this technology could be an advantageous alternative to avoid the excessive use of sulphites in wine products. The effect on the final quality aspects of wine needs to be further clarified.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fernando Salazar

Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile,Sebastián Pizarro, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Mariela Labbé, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Ismael Kasahara, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile  Felipe Aguilar, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile Pablo Ulloa, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile Liliana Godoy, Departamento de Fruticultura y Enología. Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile

Contact the author

Keywords

uv-led irradiation, acetobacter aceti (atcc 15973), sulphur dioxide, wines

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.