Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of tannins and prevention of light-struck taste: the enofotoshield project

Characterization of tannins and prevention of light-struck taste: the enofotoshield project

Abstract

AIM: Hydrolysable tannins resulted effective against the formation of light-struck taste (LST) in model wine [1]. The first activity of Enofotoshield project is to evaluate the effectiveness of tannins in limiting the LST in white wine. Therefore, tannins of different origin were characterized in terms of their chemical composition as well as their ability in preventing the appearance of LST that was firstly screened in model wine.

METHODS: Fifteen commercial tannin-based formulas of different origin (grape skin and seeds, tea, oak, chestnut, cherry, acacia, quebracho, tara, nut gall, lemon) and extraction treatment (e.g. water, solvent) were considered. They were characterized in terms of total phenolics (Folin-Ciocalteau index and 280 nm; TPI), antioxidant capacity (DPPH assay), relative amounts of oxidized phenols, ellagitannins and proanthocyanidins content, the latter two for hydrolysable and condensed tannins, respectively. The oxygen consumption rate was assessed for all the formulas with and without sulfur dioxide. The impact on astringency and bitterness was also evaluated. The effectiveness against the appearance of LST was assessed in model wine solution added with the two actors of LST, riboflavin and methionine (Met), in both oxic and anoxic conditions.

RESULTS: The tannin-based formulas showed a wide content of phenolics ranging from 462±28 to 1019±57 mg gallic acid/g powder for cherry tannins and gall nut tannins, respectively. Similarly, the antioxidant capacity strongly varied from 3.70±0.23 mM Trolox/g powder for grape skin tannins to 10.94±1.28 mM Trolox/g powder for nut gall tannins. Considering the ratio among the antioxidant capacity and TPI, tara tannins showed the greatest value. The oxygen consumption rate also differed and it was the lowest and the highest in the presence of and nut gall and chestnut tannins, respectively, when sulfur dioxide was not added. None of them affected both bitterness and astringency in white wine (up to 80 mg/L). Met decreased in all the conditions tested due to the light exposure and an increase of Met sulfoxide, the major compound deriving from Met oxidation [2], was observed. Sniffing trials showed the ability of most of these formulas in preventing the LST; some of the tested tannin preparations revealed only little differences in LST perception between oxic and anoxic conditions.

CONCLUSIONS

Tannins can effectively prevent the appearance of LST. The tannin-based formulas with the best performances in terms of LST prevention and lowest impact on wine properties will be employed at bottling for the wine production at industrial scale.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Daniela Fracassetti

Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy,Natalia, MESSINA, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano  Rebecca, BODON, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano Alberto, SALIGARI, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano Antonio, TIRELLI, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano

Contact the author

Keywords

methionine, oenological tannins, off-flavors, oxygen, phenols, riboflavin

Citation

Related articles…

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

L’AOC Ribeiro est la plus ancienne de Galice (NO de l’Espagne), avec une aire de production potentielle de 3.200 ha. Situé dans la région centrale de la vallée du Miño, le Ribeiro a un climat de tipe maritime tempéré qui se correspond avec la zone climatique II de Winkler.

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

The Baco Blanc, the Armagnac hybrid variety adapted to the viticultural challenges of tomorrow

Today in the wine industry, a lot of alternatives are available for reducing phytosanitary inputs. Among these, prophylaxis, the use of biocontrol products and the deployment of pathogen-resistant vines are the most promising. eugenol (2-methoxy-4-(2-propenyl)-phenol), a molecule with recognised antifungal properties, can contribute to the last two alternatives. This molecule has been identified as an endogenous compound in the baco blanc hybrid variety used in armagnac pdo, which is at least tolerant to botrytis cinerea.