Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

Abstract

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies (e.g. fining on lees and addition of sulfur dioxide, ascorbic acid, glutathione, and chitosan) on the overall kinetics. To this purpose, a mass spectrometric approach has been adopted by using HPLC-MS/MS, in order to get new insights in the understanding of wine oxidation processes. Sulphonated compounds related to oxidation were identified (e.g. S-sulfonated glutathione, and tryptophol and indole-3-lactic sulfonates) and their production was revealed to occur after alcoholic fermentation or fining on lees and to increase after 10 months of storage. On the other hand, treatments with chitosan during winemaking seemed linked to the hydrolysis of hydroxycinnamates, releasing their corresponding hydroxycinnamic acids. Surprisingly, when present during storage in bottle a particular behavior of chitosan was observed, where this biopolymer avoided the phenomenon of hydrolysis and showed higher inhibition against phenolic products of oxidation such as hydroxycaffeic acid dimers. Furthermore, the addition of ascorbic acid to chitosan-treated wines before bottling, reduced the generation of oxidations products and raised the production of GRP derived phenols, correlated to a better protection against oxygen. The absorption properties of chitosan with regard to phenolics were also proposed to have some consequences on the evolution of wine browning. Based on these results, the knowledge about polyphenols fate may represent a useful approach to manage the antioxidant strategies during winemaking processes.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Antonio Castro Marin

Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy,Federico, BARIS. Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy  Fabio Chinnici. Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author

Keywords

polyphenols, antioxidants, oxidation, sulfur dioxide, chitosan, ascorbic acid, winemaking

Citation

Related articles…

Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

The AOC Gaillac area is divided into three main terroirs : « The left bank terraces », « The right bank coteaux » and
« The plateau Cordais ». This division is valid at a regional scale, but it suffers of a number of local-scale exceptions. This spatial variability of the pedologic-geologic characteristics at the plot scale has been derived mainly from the main late-Würmian solifluxion phase occurring at the transition between the peri-glacial climate and the Holocene temperate conditions (13,000-10,000 yrs BP).

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Discrimination of monovarietal Italian red wines using derivative voltammetry

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics.

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Powdery mildew, caused by fungal pathogens, poses a significant threat to grapevines in the DOCa Rioja region. In efforts to improve control strategies while reducing reliance on conventional phytosanitary products, ozone could constitute a potential alternative. However, it has short persistence, thus requiring frequent treatments. This study aimed to assess the suitability of ozone as an active substance for controlling powdery mildew within a phytosanitary strategy aimed at reducing conventional phytosanitary product usage. The strategy integrating ozone with conventional products yielded powdery mildew levels comparable to conventional treatments in both disease incidence and severity.