Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

Abstract

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies (e.g. fining on lees and addition of sulfur dioxide, ascorbic acid, glutathione, and chitosan) on the overall kinetics. To this purpose, a mass spectrometric approach has been adopted by using HPLC-MS/MS, in order to get new insights in the understanding of wine oxidation processes. Sulphonated compounds related to oxidation were identified (e.g. S-sulfonated glutathione, and tryptophol and indole-3-lactic sulfonates) and their production was revealed to occur after alcoholic fermentation or fining on lees and to increase after 10 months of storage. On the other hand, treatments with chitosan during winemaking seemed linked to the hydrolysis of hydroxycinnamates, releasing their corresponding hydroxycinnamic acids. Surprisingly, when present during storage in bottle a particular behavior of chitosan was observed, where this biopolymer avoided the phenomenon of hydrolysis and showed higher inhibition against phenolic products of oxidation such as hydroxycaffeic acid dimers. Furthermore, the addition of ascorbic acid to chitosan-treated wines before bottling, reduced the generation of oxidations products and raised the production of GRP derived phenols, correlated to a better protection against oxygen. The absorption properties of chitosan with regard to phenolics were also proposed to have some consequences on the evolution of wine browning. Based on these results, the knowledge about polyphenols fate may represent a useful approach to manage the antioxidant strategies during winemaking processes.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Antonio Castro Marin

Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy,Federico, BARIS. Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy  Fabio Chinnici. Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author

Keywords

polyphenols, antioxidants, oxidation, sulfur dioxide, chitosan, ascorbic acid, winemaking

Citation

Related articles…

Corvina and Corvinone grape berries grown in different areas and their aptitude to postharvest dehydration

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Efectos del deshojado y de su combinación con el aclareo de Racimos en los componentes básicos de la producción y del Mosto, sobre cv. Tempranillo en la D.O. Ribera del Duero

Las técnicas de manejo del canopy de la vid pueden favorecer la adaptación de los sistemas de conducción a diversas condiciones de cultivo para obtener uva de calidad.

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].