Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

Abstract

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies (e.g. fining on lees and addition of sulfur dioxide, ascorbic acid, glutathione, and chitosan) on the overall kinetics. To this purpose, a mass spectrometric approach has been adopted by using HPLC-MS/MS, in order to get new insights in the understanding of wine oxidation processes. Sulphonated compounds related to oxidation were identified (e.g. S-sulfonated glutathione, and tryptophol and indole-3-lactic sulfonates) and their production was revealed to occur after alcoholic fermentation or fining on lees and to increase after 10 months of storage. On the other hand, treatments with chitosan during winemaking seemed linked to the hydrolysis of hydroxycinnamates, releasing their corresponding hydroxycinnamic acids. Surprisingly, when present during storage in bottle a particular behavior of chitosan was observed, where this biopolymer avoided the phenomenon of hydrolysis and showed higher inhibition against phenolic products of oxidation such as hydroxycaffeic acid dimers. Furthermore, the addition of ascorbic acid to chitosan-treated wines before bottling, reduced the generation of oxidations products and raised the production of GRP derived phenols, correlated to a better protection against oxygen. The absorption properties of chitosan with regard to phenolics were also proposed to have some consequences on the evolution of wine browning. Based on these results, the knowledge about polyphenols fate may represent a useful approach to manage the antioxidant strategies during winemaking processes.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Antonio Castro Marin

Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy,Federico, BARIS. Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy  Fabio Chinnici. Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author

Keywords

polyphenols, antioxidants, oxidation, sulfur dioxide, chitosan, ascorbic acid, winemaking

Citation

Related articles…

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

Climate, grapes, and wine: structure and suitability in a variable and changing climate

Climate is a pervasive factor in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality

Using RGB images and LiDAR data to characterise fruit-to-leaf ratios in grapevine collections

One of the main effects of global warming is an increase in the sugar concentration of grapes at harvest time, resulting in wines with a high alcohol content and an unbalanced structure. The fruit to leaf ratio is a key factor in determining the final sugar concentration, and training systems and management techniques can help to control this parameter.

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging. METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.