Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

Abstract

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies (e.g. fining on lees and addition of sulfur dioxide, ascorbic acid, glutathione, and chitosan) on the overall kinetics. To this purpose, a mass spectrometric approach has been adopted by using HPLC-MS/MS, in order to get new insights in the understanding of wine oxidation processes. Sulphonated compounds related to oxidation were identified (e.g. S-sulfonated glutathione, and tryptophol and indole-3-lactic sulfonates) and their production was revealed to occur after alcoholic fermentation or fining on lees and to increase after 10 months of storage. On the other hand, treatments with chitosan during winemaking seemed linked to the hydrolysis of hydroxycinnamates, releasing their corresponding hydroxycinnamic acids. Surprisingly, when present during storage in bottle a particular behavior of chitosan was observed, where this biopolymer avoided the phenomenon of hydrolysis and showed higher inhibition against phenolic products of oxidation such as hydroxycaffeic acid dimers. Furthermore, the addition of ascorbic acid to chitosan-treated wines before bottling, reduced the generation of oxidations products and raised the production of GRP derived phenols, correlated to a better protection against oxygen. The absorption properties of chitosan with regard to phenolics were also proposed to have some consequences on the evolution of wine browning. Based on these results, the knowledge about polyphenols fate may represent a useful approach to manage the antioxidant strategies during winemaking processes.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Antonio Castro Marin

Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy,Federico, BARIS. Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy  Fabio Chinnici. Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author

Keywords

polyphenols, antioxidants, oxidation, sulfur dioxide, chitosan, ascorbic acid, winemaking

Citation

Related articles…

Denial of the wine-growing landscape

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape

The vine and the hazelnut as elements of characterization of a terroir

The research examines how two characteristic cultivations of a territory like the vine and the hazelnut shape the identity of a unique terroir: Langhe (North West italy).

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters.

Effects of winemaking practices on Pinot blanc quality

Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.