Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Abstract

AIM: Wine quality maintenance during the storage is a fundamental aspect for both wine producers and consumers. Nowadays, great attention has been given to the light effect, causing detrimental changes of wine; indeed, light can induce off-flavours associated to the light-struck taste (LST)(1). This fault is due to photochemical oxidation processes in which riboflavin (RF) and methionine (Met) play an important role generating methanethiol (MeSH) and dimethyl disulphide (DMDS)(2), responsible of the unpleasant cabbage and onion-like odours that make wine undrinkable. Although it is well-known the contribution of yeasts in the final amount of these compounds in wine, microbiological strategies against the LTS defect limiting their release are not yet available. This study is part of the project “Innovative and sustainable approaches for the prevention of photo-induced defects in white wines and sparkling wines (Enofotoshield)” and in particular it aims at providing wineries with alternative microbiological approaches to counteract the LST.

METHODS: Four Saccharomyces cerevisiae strains of oenological interest (EC1118, IOC18, LS2 and AWRI796) have been compared to investigate the RF release during their growth in synthetic media (SMY and SMV) and Chardonnay must, simulating oenological conditions. Then, the RF release (including the derived flavones) was estimated by UPLC (Ultra-Performance Liquid Chromatography) analysis.

RESULTS: Results of this study revealed that RF production is influenced by the growth medium composition. Indeed, if the medium contains RF, the vitamin concentration increases over time while that of flavones remain constant; on the contrary, the opposite situation is verified in absence of RF. Moreover, investigations on other factors that could influence the RF release are still in progress (such as cell inoculum density, temperature, oxygen-limiting conditions, availability of nutrients).  Taking in consideration that a lower concentration than 80-100 μg/L could limit the LST development, the best identified condition in terms of RF release was the growth on the Chardonnay must (12,8 μg/L) compared to the two synthetic media SMY and SMV (102,4 μg/L and 316,5 μg/L, respectively).

CONCLUSIONS

This study paves the way for the development of new approaches that limit the impact on the wine aromatic profile. Indeed, the choice of the growth cultural medium is a relevant factor in terms of RF and Met production. The next steps of the study will be the analysis of the Met release and of the intracellular content of both RF and Met.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alessandra Di Canito

University of Milan,Ileana Vigentini – University of Milan Daniela Fracassetti – University of Milan Antonio Tirelli – University of Milan  Roberto Foschino – University of Milan

Contact the author

Keywords

wine microbiology, light-struck taste, yeasts

Citation

Related articles…

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.

NIR based sensometric approach for consumer preference evaluation

Climate change has had a global impact on grape production, and as a result, developing table grape varieties that can withstand climate-related threats has become a significant goal. However, it is equally important to ensure that these new grape varieties meet the preferences of consumers. To achieve this goal, a procedure has been developed that combines sensory analysis with spectroscopic data collected in the NIR region. Each sample was analyzed using both traditional analytical techniques and non-destructive NIR spectroscopy.

Evaluation of the efficiency of dialysis membranes in the wine dealcoholization process

The global wine production is continuously evolving to meet the new demands and preferences of consumers. in this evolving scenario, it’s important to determine which trends will be short-lived and which will remain over time. The promotion of healthier habits has encouraged consumers to try to find alternatives with low or no alcohol content. The challenge for the industry is to produce an alcohol-free wine that retains the familiar aromas and mouthfeel of traditional wine but without alcohol. Ethanol is the most abundant compound in wine, excluding water.

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.