Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Abstract

AIM: Wine quality maintenance during the storage is a fundamental aspect for both wine producers and consumers. Nowadays, great attention has been given to the light effect, causing detrimental changes of wine; indeed, light can induce off-flavours associated to the light-struck taste (LST)(1). This fault is due to photochemical oxidation processes in which riboflavin (RF) and methionine (Met) play an important role generating methanethiol (MeSH) and dimethyl disulphide (DMDS)(2), responsible of the unpleasant cabbage and onion-like odours that make wine undrinkable. Although it is well-known the contribution of yeasts in the final amount of these compounds in wine, microbiological strategies against the LTS defect limiting their release are not yet available. This study is part of the project “Innovative and sustainable approaches for the prevention of photo-induced defects in white wines and sparkling wines (Enofotoshield)” and in particular it aims at providing wineries with alternative microbiological approaches to counteract the LST.

METHODS: Four Saccharomyces cerevisiae strains of oenological interest (EC1118, IOC18, LS2 and AWRI796) have been compared to investigate the RF release during their growth in synthetic media (SMY and SMV) and Chardonnay must, simulating oenological conditions. Then, the RF release (including the derived flavones) was estimated by UPLC (Ultra-Performance Liquid Chromatography) analysis.

RESULTS: Results of this study revealed that RF production is influenced by the growth medium composition. Indeed, if the medium contains RF, the vitamin concentration increases over time while that of flavones remain constant; on the contrary, the opposite situation is verified in absence of RF. Moreover, investigations on other factors that could influence the RF release are still in progress (such as cell inoculum density, temperature, oxygen-limiting conditions, availability of nutrients).  Taking in consideration that a lower concentration than 80-100 μg/L could limit the LST development, the best identified condition in terms of RF release was the growth on the Chardonnay must (12,8 μg/L) compared to the two synthetic media SMY and SMV (102,4 μg/L and 316,5 μg/L, respectively).

CONCLUSIONS

This study paves the way for the development of new approaches that limit the impact on the wine aromatic profile. Indeed, the choice of the growth cultural medium is a relevant factor in terms of RF and Met production. The next steps of the study will be the analysis of the Met release and of the intracellular content of both RF and Met.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alessandra Di Canito

University of Milan,Ileana Vigentini – University of Milan Daniela Fracassetti – University of Milan Antonio Tirelli – University of Milan  Roberto Foschino – University of Milan

Contact the author

Keywords

wine microbiology, light-struck taste, yeasts

Citation

Related articles…

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Effect of scion-rootstock combinations on the performance of a near-infrared (NIR) spectroscopy method for determining vine water status

In the context of sustainable viticulture, modern and efficient techniques to determine water status are required to optimize irrigation practices. Proximal techniques such as thermography and spectroscopy have shown promising results. When these techniques are incorporated into mobile systems is possible to evaluate the water status on-the-go, offering the possibility to generate variability maps. However, in most cases, complex protocols of data acquisition and analysis are required. Also, the inherent physiological behaviour of the plants under certain water stress conditions needs to be considered. Therefore, the aim of this study was to evaluate the effect of scion-rootstock combinations on the performance of a predefined plant-based method based on proximal near-infrared (NIR) spectroscopy.

Multicriteria assessment of 11 agroecological viticulture systems during six years

Context and purpose of the study. Modern conventional agriculture, including viticulture, relies greatly on the use of chemical inputs, especially synthetic pesticides.

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.