Macrowine 2021
IVES 9 IVES Conference Series 9 Development of a strategy for measuring fruity aroma potential in red wine

Development of a strategy for measuring fruity aroma potential in red wine

Abstract

AIM: Levels of esters derived from substituted acids increase during the first years of aging and some of them are strongly involved in red wine fruity aromatic expression. Considering such a role, the analysis of their precursors remains indispensable. The goal of this research was to develop a method to level substituted acids, including their enantiomeric forms.

METHODS: Substituted esters and acids were analyzed by GC-MS. The development and optimization of hydroxycarboxylic acid quantitation and enantiomeric separation method consisted of: ester elimination of wine sample, acid extraction, derivatization, extraction and analysis of derivative methyl esters by GC-MS, using a Chiraldex G-TA column. The quantitation and enantiomeric distribution of substituted esters and acids were established in 31 commercial Bordeaux red wines.

RESULTS: Quantitation and enantiomeric distribution of esters and acids showed a strong positive correlation between the age of wine and levels of substituted esters and only a few correlations between acid enantiomers concentrations and age: e.g the decrease in (2R)-2-hydroxy-4-methylpentanoic acid concentration over time, for at least 20 years, may be due to esterification, leading to the increase of the corresponding ester. Variations in the ratio of substituted ethyl esters to their corresponding acids over time detected thanks to these analytical advances suggested that, in general, acids were continuously esterified during aging.

CONCLUSIONS

An assessment of the overall “aromatic potential” of these esters involved in red wine fruity aroma enhancement may be predicted, thanks to the development of the quantitation method of the corresponding acids.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Georgia Lytra

Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France,CELINE FRANC MARGAUX CAMELEYRE JEAN CHRISTOPHE BARBE  Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France

Contact the author

Keywords

fruity aroma, red wine, substituted esters and acids, precursors

Citation

Related articles…

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

How different SO2 doses impact amino acid and volatile profile of white wines

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months.

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Applications of a novel molecular phenology scale to align the stages of grape berry development

Phenology scales widely adopted by viticulturists (i.e., BBCH or modified E-L systems) are classification tools that describe seasonal and precisely recognized stages of fruit growth and development based on specific descriptors such as visual/physical traits or easy-to-measure compositional parameters.