Macrowine 2021
IVES 9 IVES Conference Series 9 How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

Abstract

AIM: The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early (on musts) and late (on wines soon after the end of the fermentation) acidification was evaluated.

METHODS: The experimental design consisted in the preparation of 7 wines from the same batch of grapes fermented in a first tank at the original pH of 3.2 (3.2W) and two other tanks in which the pH was adjusted to 3.5 (3.5W) and 3.9 (3.9W). On the third day of fermentation, and one week after the end of the fermentation-maceration process some aliquots of both 3.5W and 3.9W were treated to reach a 3.2 pH to afford four more wines. Polymeric pigments and phenolics were evaluated by spectrophotometry, MS and NMR techniques, acetaldehyde and anthocyanins by HPLC-DAD and reactivity of tannins towards saliva by electrophoresis. Wines were analyzed soon after the end of the fermentation and after one-year aging.

RESULTS: By increasing the pH level from 3.2 to 3.9, the amount of low polymerized flavans, individual anthocyanins and tannins reactive to BSA and saliva decreased. Conversely, an increase of acetaldehyde, of pigments resistant to the bleaching, and of ethylene-linked polymeric pigments was detected. After one year of aging, wines treated to reach a 3.2 pH significantly differ from 3.2W in acetaldehyde, tannins reactive towards proteins and polymeric pigments. This behavior was more evident when the acidification was carried out soon after the end of the fermentation-maceration process.

CONCLUSIONS

High pH values favor the polymerization of phenolics over the wine aging and results suggested that the effect is predominant when pH was increased during the fermentation, hence successive pH modulations have little (if any) effect on some typical reactions occurring during wine aging.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angelita Gambuti

Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy, Luigi PICARIELLO, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy. Martino  FORINO, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy Alessandra RINALDI, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy. Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France. Luigi MOIO, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy.

Contact the author

Keywords

red wine, aging, ph, polyphenols

Citation

Related articles…

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed.

Evaluating the greenness of wine analytical chemistry: A new metric approach

Wine is a complex matrix whose composition depends on climatic, agricultural, and winemaking factors, making quality control and authenticity assessment critical in the global market.

Wine labelling with the list of ingredients: context, consumer’s perception and future challenges

In this video recording of the IVES science meeting 2024, Stéphane La Guerche (Œnoppia, Paris, France) speaks about wine labelling with the list of ingredients: context, consumer’s perception and future challenges. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.