Macrowine 2021
IVES 9 IVES Conference Series 9 How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

Abstract

AIM: The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early (on musts) and late (on wines soon after the end of the fermentation) acidification was evaluated.

METHODS: The experimental design consisted in the preparation of 7 wines from the same batch of grapes fermented in a first tank at the original pH of 3.2 (3.2W) and two other tanks in which the pH was adjusted to 3.5 (3.5W) and 3.9 (3.9W). On the third day of fermentation, and one week after the end of the fermentation-maceration process some aliquots of both 3.5W and 3.9W were treated to reach a 3.2 pH to afford four more wines. Polymeric pigments and phenolics were evaluated by spectrophotometry, MS and NMR techniques, acetaldehyde and anthocyanins by HPLC-DAD and reactivity of tannins towards saliva by electrophoresis. Wines were analyzed soon after the end of the fermentation and after one-year aging.

RESULTS: By increasing the pH level from 3.2 to 3.9, the amount of low polymerized flavans, individual anthocyanins and tannins reactive to BSA and saliva decreased. Conversely, an increase of acetaldehyde, of pigments resistant to the bleaching, and of ethylene-linked polymeric pigments was detected. After one year of aging, wines treated to reach a 3.2 pH significantly differ from 3.2W in acetaldehyde, tannins reactive towards proteins and polymeric pigments. This behavior was more evident when the acidification was carried out soon after the end of the fermentation-maceration process.

CONCLUSIONS

High pH values favor the polymerization of phenolics over the wine aging and results suggested that the effect is predominant when pH was increased during the fermentation, hence successive pH modulations have little (if any) effect on some typical reactions occurring during wine aging.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angelita Gambuti

Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy, Luigi PICARIELLO, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy. Martino  FORINO, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy Alessandra RINALDI, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy. Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France. Luigi MOIO, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy.

Contact the author

Keywords

red wine, aging, ph, polyphenols

Citation

Related articles…

Determination of aromatic characteristics from Syrah and Tempranillo tropical wines elaborated in Northeast Brazil

Dans la region Nord-Est du Brésil, située à la Vallée du São Francisco, localiséee entre les paralleles 8-9º HS, la production de vins tropicaux a commencé il y a une vigntaine d’années. Dans cette région, il est possible d’avoir au minimum deux récoltes par an, car la moyenne de température est de 26 ºC, avec une pluviosité moyenne de 550 mm entre les mois de janvier-avril.

The impact of delayed grapevine budbreak on lemberger wine sensory compounds under variable weather conditions

Spring freeze events threaten grape production globally. As grape buds emerge from dormancy in spring, freezing temperatures have the potential to damage green tissues, decreasing yield potential and compromising fruit quality by harvest.

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.