Macrowine 2021
IVES 9 IVES Conference Series 9 How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

Abstract

AIM: The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early (on musts) and late (on wines soon after the end of the fermentation) acidification was evaluated.

METHODS: The experimental design consisted in the preparation of 7 wines from the same batch of grapes fermented in a first tank at the original pH of 3.2 (3.2W) and two other tanks in which the pH was adjusted to 3.5 (3.5W) and 3.9 (3.9W). On the third day of fermentation, and one week after the end of the fermentation-maceration process some aliquots of both 3.5W and 3.9W were treated to reach a 3.2 pH to afford four more wines. Polymeric pigments and phenolics were evaluated by spectrophotometry, MS and NMR techniques, acetaldehyde and anthocyanins by HPLC-DAD and reactivity of tannins towards saliva by electrophoresis. Wines were analyzed soon after the end of the fermentation and after one-year aging.

RESULTS: By increasing the pH level from 3.2 to 3.9, the amount of low polymerized flavans, individual anthocyanins and tannins reactive to BSA and saliva decreased. Conversely, an increase of acetaldehyde, of pigments resistant to the bleaching, and of ethylene-linked polymeric pigments was detected. After one year of aging, wines treated to reach a 3.2 pH significantly differ from 3.2W in acetaldehyde, tannins reactive towards proteins and polymeric pigments. This behavior was more evident when the acidification was carried out soon after the end of the fermentation-maceration process.

CONCLUSIONS

High pH values favor the polymerization of phenolics over the wine aging and results suggested that the effect is predominant when pH was increased during the fermentation, hence successive pH modulations have little (if any) effect on some typical reactions occurring during wine aging.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angelita Gambuti

Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy, Luigi PICARIELLO, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy. Martino  FORINO, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy Alessandra RINALDI, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy. Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France. Luigi MOIO, Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy.

Contact the author

Keywords

red wine, aging, ph, polyphenols

Citation

Related articles…

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Physiological behavior of the Chasselas grape variety under water deficit: 30 years of experiments in Switzerland

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Integrated sustainability assessment in viticulture: An indicator-based approach applied to organic vineyards

Over the past two decades, sustainable vineyard management practices have become increasingly important as the wine industry is facing critical challenges, including climate change, biodiversity loss, and soil degradation.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Evaluation of clonal variability of phenolic compounds in Vitis vinifera L. cv. Trnjak crni grown in Croatia

Context and purpose of the study. Croatia has rich grapevine genetic resources with more than 130 native varieties preserved.