Macrowine 2021
IVES 9 IVES Conference Series 9 Ochratoxin a degradation by Botrytis cinerea laccase: effect of oenological factors and redox mediators

Ochratoxin a degradation by Botrytis cinerea laccase: effect of oenological factors and redox mediators

Abstract

AIM: This study evaluates the effect of different oenological factors and natural mediators on the degradation of Ochratoxin A (OTA) using Botrytis cinerea laccase. Because of its risk to human health, different detoxification techniques have been developed in various kinds of foodstuffs. The use of fungal or bacterial laccases is a biological method to decrease the OTA concentration [1, 2]. Laccases can oxidize a wide range of substrates, some of which cannot be oxidized directly by these enzymes and require the use of redox mediators [3]. Due to this, several natural mediators present in wine and different SO2 and ethanol concentrations were tested in the current work.

METHODS: The ability of laccase to degrade OTA was studied by incubation of the enzyme in acetate buffer pH 4.0 and model wine, with OTA and mediators at 28 ºC during 24 h. To determine the impact of SO2 and ethanol on the OTA degradation caused by laccase, different concentrations of SO2 (10, 20 and 30 mg/L) and ethanol (5, 10 and 15% v/v) were used. The quantification of this mycotoxin was carried out in a HPLC-QTOF-MS system.

RESULTS: Under these conditions, OTA cannot be oxidized directly by laccase from Botrytis cinerea and the use of redox mediators is required. Among natural mediators tested, (-)-epicatechin and (+)-catechin were the phenolic compounds with higher impact on the biodegradation of this mycotoxin, achieving a decrease of OTA concentration over 50%. The degradation of OTA was completely inhibed by 30 mg of SO2/L,  while 20 mg of SO2/L reduced lacasse activity by a half and 10 mg of SO2/L hardly caused any effect on the biodegradation of this mycotoxin. A concentration of 15% of ethanol led to a 50% reduction in the activity of laccase over OTA. 

CONCLUSIONS

These preliminary results may be a first step in finding biological alternative strategies to eliminate undesirable substances such as mycotoxins (OTA) present in wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

osé Pérez-Navarro

Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain.,Tania, PANIAGUA MARTÍNEZ, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain. Pol, GIMÉNEZ, Faculty of Oenology, University of Rovira I Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain. Joan Miquel, CANALS, Faculty of Oenology, University of Rovira I Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain. Fernando, ZAMORA, Faculty of Oenology, University of Rovira I Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain. Sergio, GÓMEZ-ALONSO, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain.

Contact the author

Keywords

mycotoxin, enzyme, biodetoxification, fungi, SO2, ethanol

Citation

Related articles…

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

Evaluating analytical methods for quantification of glutathione in grape juice and wine

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage.

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.