Macrowine 2021
IVES 9 IVES Conference Series 9 Ochratoxin a degradation by Botrytis cinerea laccase: effect of oenological factors and redox mediators

Ochratoxin a degradation by Botrytis cinerea laccase: effect of oenological factors and redox mediators

Abstract

AIM: This study evaluates the effect of different oenological factors and natural mediators on the degradation of Ochratoxin A (OTA) using Botrytis cinerea laccase. Because of its risk to human health, different detoxification techniques have been developed in various kinds of foodstuffs. The use of fungal or bacterial laccases is a biological method to decrease the OTA concentration [1, 2]. Laccases can oxidize a wide range of substrates, some of which cannot be oxidized directly by these enzymes and require the use of redox mediators [3]. Due to this, several natural mediators present in wine and different SO2 and ethanol concentrations were tested in the current work.

METHODS: The ability of laccase to degrade OTA was studied by incubation of the enzyme in acetate buffer pH 4.0 and model wine, with OTA and mediators at 28 ºC during 24 h. To determine the impact of SO2 and ethanol on the OTA degradation caused by laccase, different concentrations of SO2 (10, 20 and 30 mg/L) and ethanol (5, 10 and 15% v/v) were used. The quantification of this mycotoxin was carried out in a HPLC-QTOF-MS system.

RESULTS: Under these conditions, OTA cannot be oxidized directly by laccase from Botrytis cinerea and the use of redox mediators is required. Among natural mediators tested, (-)-epicatechin and (+)-catechin were the phenolic compounds with higher impact on the biodegradation of this mycotoxin, achieving a decrease of OTA concentration over 50%. The degradation of OTA was completely inhibed by 30 mg of SO2/L,  while 20 mg of SO2/L reduced lacasse activity by a half and 10 mg of SO2/L hardly caused any effect on the biodegradation of this mycotoxin. A concentration of 15% of ethanol led to a 50% reduction in the activity of laccase over OTA. 

CONCLUSIONS

These preliminary results may be a first step in finding biological alternative strategies to eliminate undesirable substances such as mycotoxins (OTA) present in wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

osé Pérez-Navarro

Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain.,Tania, PANIAGUA MARTÍNEZ, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain. Pol, GIMÉNEZ, Faculty of Oenology, University of Rovira I Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain. Joan Miquel, CANALS, Faculty of Oenology, University of Rovira I Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain. Fernando, ZAMORA, Faculty of Oenology, University of Rovira I Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain. Sergio, GÓMEZ-ALONSO, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain.

Contact the author

Keywords

mycotoxin, enzyme, biodetoxification, fungi, SO2, ethanol

Citation

Related articles…

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

Changes in wine secondary metabolites composition by the timing of inoculation with lactic acid bacteria: impact on wine aroma

For the first time, it was established that the timing of inoculation with LAB could significantly impact the concentration of many secondary metabolites leading to significant aromatic changes. From studied compounds, the most influenced were esters and diacetyl.

Stable or dynamic? How phenotypic plasticity could be key to select for grapevine adaptation?

Climate change will require the adaptation of agricultural systems and among the different means of adaptation, changing plant material is a promising strategy. In viticulture, different levels of diversity are currently exploited: clonal and varietal diversity for rootstocks and scions. A huge quantity of research aims to evaluate different genotypes in different environmental conditions to identify which ones are the best adapted and the most tolerant to future environmental conditions.

Study to optimize the effectiveness of copper treatments for low impact viticulture

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981).

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.