Macrowine 2021
IVES 9 IVES Conference Series 9 Ochratoxin a degradation by Botrytis cinerea laccase: effect of oenological factors and redox mediators

Ochratoxin a degradation by Botrytis cinerea laccase: effect of oenological factors and redox mediators

Abstract

AIM: This study evaluates the effect of different oenological factors and natural mediators on the degradation of Ochratoxin A (OTA) using Botrytis cinerea laccase. Because of its risk to human health, different detoxification techniques have been developed in various kinds of foodstuffs. The use of fungal or bacterial laccases is a biological method to decrease the OTA concentration [1, 2]. Laccases can oxidize a wide range of substrates, some of which cannot be oxidized directly by these enzymes and require the use of redox mediators [3]. Due to this, several natural mediators present in wine and different SO2 and ethanol concentrations were tested in the current work.

METHODS: The ability of laccase to degrade OTA was studied by incubation of the enzyme in acetate buffer pH 4.0 and model wine, with OTA and mediators at 28 ºC during 24 h. To determine the impact of SO2 and ethanol on the OTA degradation caused by laccase, different concentrations of SO2 (10, 20 and 30 mg/L) and ethanol (5, 10 and 15% v/v) were used. The quantification of this mycotoxin was carried out in a HPLC-QTOF-MS system.

RESULTS: Under these conditions, OTA cannot be oxidized directly by laccase from Botrytis cinerea and the use of redox mediators is required. Among natural mediators tested, (-)-epicatechin and (+)-catechin were the phenolic compounds with higher impact on the biodegradation of this mycotoxin, achieving a decrease of OTA concentration over 50%. The degradation of OTA was completely inhibed by 30 mg of SO2/L,  while 20 mg of SO2/L reduced lacasse activity by a half and 10 mg of SO2/L hardly caused any effect on the biodegradation of this mycotoxin. A concentration of 15% of ethanol led to a 50% reduction in the activity of laccase over OTA. 

CONCLUSIONS

These preliminary results may be a first step in finding biological alternative strategies to eliminate undesirable substances such as mycotoxins (OTA) present in wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

osé Pérez-Navarro

Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain.,Tania, PANIAGUA MARTÍNEZ, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain. Pol, GIMÉNEZ, Faculty of Oenology, University of Rovira I Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain. Joan Miquel, CANALS, Faculty of Oenology, University of Rovira I Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain. Fernando, ZAMORA, Faculty of Oenology, University of Rovira I Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain. Sergio, GÓMEZ-ALONSO, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain.

Contact the author

Keywords

mycotoxin, enzyme, biodetoxification, fungi, SO2, ethanol

Citation

Related articles…

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration

Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Esca, one of the main grapevine trunk diseases, is a complex and poorly understood disease. Phaeoacremonium minimum and Phaeomoniella chlamydospora, two of the main pathogens associated to this disease, are thought to be responsible for the first trunk infections. Little is known concerning grapevine trunk defenses during pathogen infection.

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Study to optimize the effectiveness of copper treatments for low impact viticulture

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981).