Macrowine 2021
IVES 9 IVES Conference Series 9 Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

Abstract

AIM: The quality of bottled white wines is highly influenced by their storage conditions, mainly temperature, and exposure to light and oxygen (1, 2). The aim of this work was to study the effect of different storage conditions on the volatile composition and sensorial characteristics of a white wine.

METHODS: Wines were bottled in clear glass bottles with three types of cork stoppers and stored at different temperature and light exposure, simulating commercial conditions (light exposure and room temperature) and optimal cellar conditions (darkness and 12 ºC). Volatile compounds, previously extracted by SPE, were analyzed by GC-MS, while descriptive sensory analysis was used to evaluate wine organoleptic characteristics.

RESULTS: Volatile and sensory profile of wines stored under commercial conditions suffered important changes, being significantly decreased their volatile compounds with fruity and floral aromas. At the same time, volatile compounds related to aged-type characters (linalool oxides, vitispirane, TDN or furan derivatives) increased in these wines. Wines stored at optimal cellar conditions showed a similar volatile and sensory profile to wine before bottling. Moreover, the quality of the white wines was better preserved by the high-quality natural corks and microgranulated corks, from a sensory point of view.

CONCLUSIONS

The shelf life and quality of white wines are considerably decreased by temperature and light exposure conditions in retail outlets, due to the premature development of aged-type characters.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manuel López Viñas

Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain,Lourdes MARCHANTE, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), IVICAM, Tomelloso, Ciudad Real, Spain M. Elena ALAÑÓN, Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ciudad Real, Spain M. Soledad PÉREZ-COELLO, Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain M. Consuelo DÍAZ-MAROTO, Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain

Contact the author

Keywords

storage, cork stoppers, volatile compounds, sensorial profile, white wine

Citation

Related articles…

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Despite its relevance for wine quality and stability, red wine colloids have not still been
sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

An online training tool for wine professionals around the world: from responsible service to a sustainable consumption of wine

Most consumers enjoy wine in moderation, however, there remains a minority that may develop risky drinking habits, potentially harming themselves and those around them. For the last fifteen years, a prime objective of the wine in moderation programme has been to educate and empower the wine sector and now for the first time, a central education tool has been developed, integrating the topic of moderate consumption horizontally in all wine activities. The entire wine value chain – from the producer to the salesperson to the restaurant service staff – can contribute to reduce harmful consumption and encourage responsible drinking patterns.

Sensory profile: a tool to characterize originality of wines produced without sulfites

A trend to reduce chemical inputs in wines exists, especially sulfur dioxide (SO2). This additive is widely used due to its antioxidant, antiseptic and antioxidasic properties. During without sulfites vinification, bioprotection by adding yeast on harvest could be a sulfites alternative. With extension of this wine market, sensory impact linked to sulfites absence and/or sulfites alternative should be evaluated. That’s what this approach proposes to do, focusing on sensory characteristics of wines produced with or without SO2 addition during the winemaking process. METHODS: Wines were elaborated from Merlot grapes of two maturity levels according to three modalities: SO2, without SO2 and bioprotection on harvest (mix of Torulaspora delbrueckii and Metschnikowia pulcherrima). SO2 modality was sulfited throughout the winemaking and aging processes whether other modalities received any addition. After two years of aging, sensory studies were carried out with a specific panel for one month. First, descriptors were generated to differentiate the wines, then panelists were trained on these specific descriptors for five sessions and finally wines sensory profiles were elaborated