Macrowine 2021
IVES 9 IVES Conference Series 9 Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

Abstract

AIM: The quality of bottled white wines is highly influenced by their storage conditions, mainly temperature, and exposure to light and oxygen (1, 2). The aim of this work was to study the effect of different storage conditions on the volatile composition and sensorial characteristics of a white wine.

METHODS: Wines were bottled in clear glass bottles with three types of cork stoppers and stored at different temperature and light exposure, simulating commercial conditions (light exposure and room temperature) and optimal cellar conditions (darkness and 12 ºC). Volatile compounds, previously extracted by SPE, were analyzed by GC-MS, while descriptive sensory analysis was used to evaluate wine organoleptic characteristics.

RESULTS: Volatile and sensory profile of wines stored under commercial conditions suffered important changes, being significantly decreased their volatile compounds with fruity and floral aromas. At the same time, volatile compounds related to aged-type characters (linalool oxides, vitispirane, TDN or furan derivatives) increased in these wines. Wines stored at optimal cellar conditions showed a similar volatile and sensory profile to wine before bottling. Moreover, the quality of the white wines was better preserved by the high-quality natural corks and microgranulated corks, from a sensory point of view.

CONCLUSIONS

The shelf life and quality of white wines are considerably decreased by temperature and light exposure conditions in retail outlets, due to the premature development of aged-type characters.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manuel López Viñas

Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain,Lourdes MARCHANTE, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), IVICAM, Tomelloso, Ciudad Real, Spain M. Elena ALAÑÓN, Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ciudad Real, Spain M. Soledad PÉREZ-COELLO, Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain M. Consuelo DÍAZ-MAROTO, Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain

Contact the author

Keywords

storage, cork stoppers, volatile compounds, sensorial profile, white wine

Citation

Related articles…

Definition and planning of viticultural landscapes case study in the “Côtes du Rhône Gardoises”

Les préoccupations actuelles autour des paysages viticoles vont au-delà des clichés promotionnels développés par les stratégies marketing. En effet, les paysages sont aujourd’hui au cœur d’une demande sociale croissante qui se traduit par différentes lois (la loi paysage de 1993, le paysage reconnu comme patrimoine commun de la nation par la loi n°95-101, la création du Conseil national du paysage par arrêté du 8/12/2000).

Determining sub-appellations in Ontario’s wine regions

Vintners Quality Alliance (VQA) Ontario, (Alliance de qualité Vintners) est responsable de l’administration et de l’imposition des normes en liaison avec la qualité du vin, l’appellation d’origine, les variétés de raisin et les méthodes de production. Des vins produits selon les règlements de VQA sont actuellement étiquetés de trois distinctes mais larges régions d’appellation

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Which heat test can realistically estimate white wine haze risk?

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

Evaluating the greenness of wine analytical chemistry: A new metric approach

Wine is a complex matrix whose composition depends on climatic, agricultural, and winemaking factors, making quality control and authenticity assessment critical in the global market.