Guyot or pergola for dehydration of Rondinella grape

Abstract

AIM: Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties to make Amarone wine. In this study we compared the response of Rondinella grape during postharvest dehydration from vines trained with Guyot or Pergola.

METHODS: Grapes were harvested at the same ripening stage but the grape production of Guyot and Pergola was quite different, higher in Pergola vines. Grape bunches were placed in commercial fruttaio and left to dehydrate with close-open system until reaching a weight loss of 30%. Samplings were done at 10, 20, and 30% weight loss. Berry juice enochemical analyses were performed with WineScanTM (Foss Italia) whereas the analyses of specific polyphenol compounds such as trans-resveratrol, quercetin-glucoside, and the monoglucoside anthocyanins were carried out by HPLC. Electronic nose was used to measure the juice headspace gas and GC/MS to analyze the specific VOCs (volatile organic compounds).

RESULTS: Not significant difference in the grape characteristics between the two samples were observed during dehydration; sugars increased at the same extent, about 30% in proportion with the weight loss. The acidity did not change and was similar between the two samples but malic acid initially decreased and then increased. FAN was much higher in Guyot sample at harvest and the difference was kept during dehydration, probably due to higher yield of Pergola. Guyot sample had a higher content in quercetin and monoglucoside anthocyanins while Pergola grapes had higher content in total polyphenols and total anthocyanins and specifically in trans-resveratrol and complexed anthocyanins. Electronic nose revealed a significant difference in grape must volatiles between the two samples which was validated by different concentration in VOCs. 

CONCLUSIONS

Guyot provide grapes with high content of free anthocyanins and quercetin while Pergola grapes have high content in trans-resveratrol and total anthocyanins that increased greater in Pergola than in Guyot. A significant difference in VOCs were measured which was validated by electronic nose

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fabio Mencarelli

DAFE, UNIVERSITY OF PISA, ITALY,GREGORIO SANTINI, DAFE, UNIVERSITY OF PISA, ITALY  BRUNELLA CECCANTONI, SERENA FERRI, RAFFAELE CERRETA, ANDREA BELLINCONTRO, DIBAF, UNIVERSITY OF TUSCIA, VITERBO, ITALY  MARGHERITA MODESTI, LIFE SCIENCE INSTITUTE, SCUOLA S.ANNA, PISA  DANIELE ACCORDINI, CANTINA VALOPOLICELLA DI NEGRAR, NEGRAR (VR), ITALY

Contact the author

Keywords

grape dehydration, resveratrol, quercetin, training system

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Control of grapevine virus diseases in collections and at the stages of propagation in Ukraine

The principles of virological control on different types of grapevine collections and plantations are summarized.

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

This study aimed to explore an alternative fate of varietal thiols by identifying and characterising cis-2-methyl-4-propyl-1,3-oxathiane

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.