Guyot or pergola for dehydration of Rondinella grape

Abstract

AIM: Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties to make Amarone wine. In this study we compared the response of Rondinella grape during postharvest dehydration from vines trained with Guyot or Pergola.

METHODS: Grapes were harvested at the same ripening stage but the grape production of Guyot and Pergola was quite different, higher in Pergola vines. Grape bunches were placed in commercial fruttaio and left to dehydrate with close-open system until reaching a weight loss of 30%. Samplings were done at 10, 20, and 30% weight loss. Berry juice enochemical analyses were performed with WineScanTM (Foss Italia) whereas the analyses of specific polyphenol compounds such as trans-resveratrol, quercetin-glucoside, and the monoglucoside anthocyanins were carried out by HPLC. Electronic nose was used to measure the juice headspace gas and GC/MS to analyze the specific VOCs (volatile organic compounds).

RESULTS: Not significant difference in the grape characteristics between the two samples were observed during dehydration; sugars increased at the same extent, about 30% in proportion with the weight loss. The acidity did not change and was similar between the two samples but malic acid initially decreased and then increased. FAN was much higher in Guyot sample at harvest and the difference was kept during dehydration, probably due to higher yield of Pergola. Guyot sample had a higher content in quercetin and monoglucoside anthocyanins while Pergola grapes had higher content in total polyphenols and total anthocyanins and specifically in trans-resveratrol and complexed anthocyanins. Electronic nose revealed a significant difference in grape must volatiles between the two samples which was validated by different concentration in VOCs. 

CONCLUSIONS

Guyot provide grapes with high content of free anthocyanins and quercetin while Pergola grapes have high content in trans-resveratrol and total anthocyanins that increased greater in Pergola than in Guyot. A significant difference in VOCs were measured which was validated by electronic nose

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fabio Mencarelli

DAFE, UNIVERSITY OF PISA, ITALY,GREGORIO SANTINI, DAFE, UNIVERSITY OF PISA, ITALY  BRUNELLA CECCANTONI, SERENA FERRI, RAFFAELE CERRETA, ANDREA BELLINCONTRO, DIBAF, UNIVERSITY OF TUSCIA, VITERBO, ITALY  MARGHERITA MODESTI, LIFE SCIENCE INSTITUTE, SCUOLA S.ANNA, PISA  DANIELE ACCORDINI, CANTINA VALOPOLICELLA DI NEGRAR, NEGRAR (VR), ITALY

Contact the author

Keywords

grape dehydration, resveratrol, quercetin, training system

Citation

Related articles…

Genetics of adventitious root formation in grapevines

Commercial grapevine propagation relies on the ability of dormant wood material to develop adventitious roots.

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. This beverage is increasingly produced at industrial scale, but its quality standards remain to be defined. Metabolomics analysis was carried out using FT-ICR-MS to understand the chemical transformations induced by the production phases and the type of tea on

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).