Guyot or pergola for dehydration of Rondinella grape

Abstract

AIM: Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties to make Amarone wine. In this study we compared the response of Rondinella grape during postharvest dehydration from vines trained with Guyot or Pergola.

METHODS: Grapes were harvested at the same ripening stage but the grape production of Guyot and Pergola was quite different, higher in Pergola vines. Grape bunches were placed in commercial fruttaio and left to dehydrate with close-open system until reaching a weight loss of 30%. Samplings were done at 10, 20, and 30% weight loss. Berry juice enochemical analyses were performed with WineScanTM (Foss Italia) whereas the analyses of specific polyphenol compounds such as trans-resveratrol, quercetin-glucoside, and the monoglucoside anthocyanins were carried out by HPLC. Electronic nose was used to measure the juice headspace gas and GC/MS to analyze the specific VOCs (volatile organic compounds).

RESULTS: Not significant difference in the grape characteristics between the two samples were observed during dehydration; sugars increased at the same extent, about 30% in proportion with the weight loss. The acidity did not change and was similar between the two samples but malic acid initially decreased and then increased. FAN was much higher in Guyot sample at harvest and the difference was kept during dehydration, probably due to higher yield of Pergola. Guyot sample had a higher content in quercetin and monoglucoside anthocyanins while Pergola grapes had higher content in total polyphenols and total anthocyanins and specifically in trans-resveratrol and complexed anthocyanins. Electronic nose revealed a significant difference in grape must volatiles between the two samples which was validated by different concentration in VOCs. 

CONCLUSIONS

Guyot provide grapes with high content of free anthocyanins and quercetin while Pergola grapes have high content in trans-resveratrol and total anthocyanins that increased greater in Pergola than in Guyot. A significant difference in VOCs were measured which was validated by electronic nose

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fabio Mencarelli

DAFE, UNIVERSITY OF PISA, ITALY,GREGORIO SANTINI, DAFE, UNIVERSITY OF PISA, ITALY  BRUNELLA CECCANTONI, SERENA FERRI, RAFFAELE CERRETA, ANDREA BELLINCONTRO, DIBAF, UNIVERSITY OF TUSCIA, VITERBO, ITALY  MARGHERITA MODESTI, LIFE SCIENCE INSTITUTE, SCUOLA S.ANNA, PISA  DANIELE ACCORDINI, CANTINA VALOPOLICELLA DI NEGRAR, NEGRAR (VR), ITALY

Contact the author

Keywords

grape dehydration, resveratrol, quercetin, training system

Citation

Related articles…

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.

Effect of one-year cover crop and arbuscular mycorrhiza inocululation in the microbial soil community of a vineyard

The microbial composition of the soil is an important factor to consider in viticulture, since its influence on the “terroir” and on the organoleptic properties of the wine have been demonstrated. Different agronomic techniques have the potential to modify the composition and functionality of the soil microbial community. Maintaining green covers is known to increase soil microbial diversity. The direct application of inoculum of beneficial microorganisms to the soil has also been used to increase their abundance. However, the environmental conditions of each site seem to have a determining weight in the result of these practices. In this study, we compared the effect on the microbial community of a cover crop with legumes in autumn and the inoculation of grapevines with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseae in the previous spring. The study has been carried out in a vineyard in Binissalem, Mallorca, Spain. After applying the treatments, we will analyze the soil microbial communities using the data obtained from Illumina amplification of soil DNA from the 16S and ITS regions to analyze bacteria and fungi community, respectively. In addition, we will record the physicochemical characteristics of the soil at each sampling point. The result showed that agronomic management, in the short term, has less influence than soil characteristics on the composition of the soil microbiome. With these results, we can conclude that in a vineyard, agricultural techniques should focus on improving the characteristics of the soil to improve the biodiversity of the soil microbiota.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.