The effects of antioxidants and gas sparging on New Zealand white wines

Abstract

AIM: This study aims to investigate the effects of different conditions of grape processing or fermentation on the aroma profile of New Zealand white wines.

METHODS: Experiments have been designed to study how glutathione and ascorbic acid impact on the aroma compounds of Sauvignon Blanc and Pinot Gris wines. Attention was also paid to the effectiveness of two gas sparging regimes (oxygen and nitrogen), applied during fermentation, on the removal of reductive sulfur aromas in Sauvignon Blanc wines.

RESULTS: Additions of glutathione to the grape juices increased the levels of polyfunctional mercaptans in the finished wines. The lowest levels of polyfunctional mercaptan compounds were found in the wines with little supplementary antioxidants added. A high level of the joint combination of ascorbic acid and glutathione provided the wines with even higher production of polyfunctional mercaptans. Increasing the amount of elemental sulfur addition to the grape must before pressing led to an increase in the formation of several thiol compounds, including some unwanted reductive compounds. Few changes were observed in the concentrations of aroma compounds when the juices were sparged with nitrogen during fermentation. Additions of oxygen during fermentation led to some decrease in the concentration of polyfunctional mercaptans for the 10 mg/L sulfur additions, but did not significantly remove reductive aroma compounds. 

CONCLUSIONS

This study has demonstrated a positive benefit to the formation of polyfunctional mercaptans with passionfruit/ tropical aromas, from additions of glutathione and ascorbic acid at harvest. The oxygen or nitrogen applied during fermentation did not result in the removal of undesirable reductive aroma compounds. Further trials are needed to examine increased oxygen as well as nitrogen dosages during fermentation, and their effects on reductive compounds.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xiaotong Lyu 

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand,Leandro Dias ARAUJO, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Siew-Young QUEK, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Wessel. J. DU TOIT, Institute for Grape and Wine Sciences/Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa Paul. A. KILMARTIN*, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand

Contact the author

Keywords

sauvignon blanc, pinot gris, antioxidants, glutathione, ascorbic acid, reductive compounds, oxygen, nitrogen, polyfunctional mercaptans

Citation

Related articles…

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage.

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines.

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.