The effects of antioxidants and gas sparging on New Zealand white wines

Abstract

AIM: This study aims to investigate the effects of different conditions of grape processing or fermentation on the aroma profile of New Zealand white wines.

METHODS: Experiments have been designed to study how glutathione and ascorbic acid impact on the aroma compounds of Sauvignon Blanc and Pinot Gris wines. Attention was also paid to the effectiveness of two gas sparging regimes (oxygen and nitrogen), applied during fermentation, on the removal of reductive sulfur aromas in Sauvignon Blanc wines.

RESULTS: Additions of glutathione to the grape juices increased the levels of polyfunctional mercaptans in the finished wines. The lowest levels of polyfunctional mercaptan compounds were found in the wines with little supplementary antioxidants added. A high level of the joint combination of ascorbic acid and glutathione provided the wines with even higher production of polyfunctional mercaptans. Increasing the amount of elemental sulfur addition to the grape must before pressing led to an increase in the formation of several thiol compounds, including some unwanted reductive compounds. Few changes were observed in the concentrations of aroma compounds when the juices were sparged with nitrogen during fermentation. Additions of oxygen during fermentation led to some decrease in the concentration of polyfunctional mercaptans for the 10 mg/L sulfur additions, but did not significantly remove reductive aroma compounds. 

CONCLUSIONS

This study has demonstrated a positive benefit to the formation of polyfunctional mercaptans with passionfruit/ tropical aromas, from additions of glutathione and ascorbic acid at harvest. The oxygen or nitrogen applied during fermentation did not result in the removal of undesirable reductive aroma compounds. Further trials are needed to examine increased oxygen as well as nitrogen dosages during fermentation, and their effects on reductive compounds.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xiaotong Lyu 

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand,Leandro Dias ARAUJO, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Siew-Young QUEK, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Wessel. J. DU TOIT, Institute for Grape and Wine Sciences/Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa Paul. A. KILMARTIN*, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand

Contact the author

Keywords

sauvignon blanc, pinot gris, antioxidants, glutathione, ascorbic acid, reductive compounds, oxygen, nitrogen, polyfunctional mercaptans

Citation

Related articles…

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management.

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation

Adapting Portuguese vineyards to climate change: impact of different irrigation regimes on phenolic composition

Climate change has led to increased extreme weather events, such as severe droughts and intense rainfall, with regions like Alentejo and Algarve in Portugal, being particularly affected.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.