The effects of antioxidants and gas sparging on New Zealand white wines

Abstract

AIM: This study aims to investigate the effects of different conditions of grape processing or fermentation on the aroma profile of New Zealand white wines.

METHODS: Experiments have been designed to study how glutathione and ascorbic acid impact on the aroma compounds of Sauvignon Blanc and Pinot Gris wines. Attention was also paid to the effectiveness of two gas sparging regimes (oxygen and nitrogen), applied during fermentation, on the removal of reductive sulfur aromas in Sauvignon Blanc wines.

RESULTS: Additions of glutathione to the grape juices increased the levels of polyfunctional mercaptans in the finished wines. The lowest levels of polyfunctional mercaptan compounds were found in the wines with little supplementary antioxidants added. A high level of the joint combination of ascorbic acid and glutathione provided the wines with even higher production of polyfunctional mercaptans. Increasing the amount of elemental sulfur addition to the grape must before pressing led to an increase in the formation of several thiol compounds, including some unwanted reductive compounds. Few changes were observed in the concentrations of aroma compounds when the juices were sparged with nitrogen during fermentation. Additions of oxygen during fermentation led to some decrease in the concentration of polyfunctional mercaptans for the 10 mg/L sulfur additions, but did not significantly remove reductive aroma compounds. 

CONCLUSIONS

This study has demonstrated a positive benefit to the formation of polyfunctional mercaptans with passionfruit/ tropical aromas, from additions of glutathione and ascorbic acid at harvest. The oxygen or nitrogen applied during fermentation did not result in the removal of undesirable reductive aroma compounds. Further trials are needed to examine increased oxygen as well as nitrogen dosages during fermentation, and their effects on reductive compounds.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xiaotong Lyu 

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand,Leandro Dias ARAUJO, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Siew-Young QUEK, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Wessel. J. DU TOIT, Institute for Grape and Wine Sciences/Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa Paul. A. KILMARTIN*, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand

Contact the author

Keywords

sauvignon blanc, pinot gris, antioxidants, glutathione, ascorbic acid, reductive compounds, oxygen, nitrogen, polyfunctional mercaptans

Citation

Related articles…

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’.

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product.

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).