Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

Abstract

AIM: Wine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation, production, and search for differentiated aromatic characteristics. Thus, the aromatic profile of Chardonnay cultivar clone 809 was evaluated, due to its moscato character, in order to verify its potential for sparkling wines in the southeast region of Minas Gerais (Brazil) in comparison to clone 76 that the plantation is predominant in the region.

METHODS: The study was conducted in a 6-year-old experimental altitude vineyard of EPAMIG located at Caldas city, and vinification was performed according to the traditional method, Champenoise (18 months in sur lie). Grapes were harvested in the maturity stage for sparkling wine production and in both fermentation was applied Saccharomyces bayanus yeast. The free volatile compounds were identified by HS-SPME/GC-MS in two consecutive seasons, 2017 and 2018, and in the clones 76 and 809 of Chardonnay cultivar grafted onto 1103 Paulsen and trained on a vertical shoot positioned trellis.

RESULTS: It was pointed out between 54 and 90 compounds in all matrices (berry, must, base wine and sparkling wine), and the number of monoterpenoid compounds found in clone 809 was slightly more than double that found in clone 76 (31 compounds against 14), as was the abundance of these compounds in all of them. The multivariate analysis was applied for the base and sparkling wines evaluation for both clones and seasons, showing that the process steps differentiate in PC 1 (42.3%, base wine x sparkling wine), PC2 discriminated the clones (16.8%, clone 809 x clone 76), and the third component (15.1%) distinguished the base wines in seasons and the sparkling wines were grouped together conforming to the clone. Clone 809 was discriminated according to the following compounds: α-terpineol, linalool, ß-mircene, hotrienol, nerol oxide and limonene.

CONCLUSIONS

According to the multivariate analysis, the sparkling wines were grouped by their clones, suggesting that, regardless of the vintage, the sparkling wine, showed significant influence derived from clone genetics, and that according to the compounds confers floral, fruity and sweet aromas to sparkling wines elaborated with Chardonnay grape berries – clone 809. Although the data showed this difference between Chardonnay clones, the sensory analysis would be an additional tool to confirm the Moscato character and to guide further experiments.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Naíssa, Prévide Bernardo

Food and Experimental Nutrition Department, School of Pharmaceutical Sciences and Food Research Center, University of São Paulo, São Paulo, Brazil ,Aline, de OLIVEIRA – Food and Experimental Nutrition Department, School of Pharmaceutical Sciences and Food Research Center, University of São Paulo, São Paulo, Brazil  Renata, Vieira da MOTA – Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas, Minas Gerais, Brazil  Francisco Mickael, de Medeiros CÂMARA – Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas, Minas Gerais, Brazil  Isabela, PEREGRINO – Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas, Minas Gerais, Brazil  Murillo, de A. REGINA – Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas, Minas Gerais, Brazil  Eduardo, PURGATTO – Food and Experimental Nutrition Department, School of Pharmaceutical Sciences and Food Research Center, University of São Paulo, São Paulo, Brazil

Contact the author

Keywords

vitis vinifera, moscato character, food analysis, grape, pca analysis, hs-spme, gc-ms, flavour

Citation

Related articles…

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt

The origin and the discovery of “terroir”

Le mot “terroir” dérive du latin “terra”, mais déjà les Romains l’indiquaient comme “locus” ou”loci”, c’est-à-dire un lieu ayant le “genius”destiné à la production d’un produit d’excellente qualité.

Long term influence of a cover crop in the agronomic and oenological performance of CV. Chardonnay

Cover crops are acknowledged to be an interesting tool to produce
higher quality grapes in red varieties, as they generally reduce vine vigour and yield. However, their incidence in white wine quality is not clear, since higher nitrogen availability can play an important positive
role, and cover crops may compete for this nutrient. The possible reduction in available nitrogen can also modify the fermentation processes, as well as the synthesis of aromas in the wine. The aim of this work was to evaluate the long-term effect of a grass cover crop on grape and wine quality.