New acacia gums fractions: how their features affect the foamability of sparkling base wines?

Abstract

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation, but this procedure also leads to a drastic loss of foamability2. Acacia gums improve the foamability of some sparkling base wines treated with bentonite3. Acacia gums are already authorized as additives in wine production4. We studied how the addition of new fractions from Acacia gums affected the wines foamability. Our work deepens the relationship between wine foamability and gums fractions properties. Eight sparkling base wines were elaborated by the traditional white winemaking method. Three of them were elaborated in three different regions from Spain: Malaga using Moscatel grapes as well as Saragossa and Tarragona (TA), both using Macabeo grapes. The other five base wines were elaborated in the French region of Champagne using Chardonnay (4) and Pinot noir (1) grapes. They were treated with bentonite, stirred and filtered. Acacia senegal (Asen) and Acacia seyal (Asey) gums were fractionated by Ion Exchange Chromatography giving two high (F1sen and F1sey) and two low (F2sen and F2sey) molar mass fractions. Fractions and sparkling base wines were deeply characterized. Four Acacia gums fractions were separately added to wines (300 mg·L-1), resulting in “supplemented CO-wines”. Based on shaking test, wine was vigorously hand-shaken in closed tubes. The foam height at 5 and every 10 seconds during 90 seconds was measured (all in triplicate). The maximum foam height was improved in 11 out of the 16 supplementations (69%) with F1 fractions, which were the fractions with high protein amount and high molar mass. F1sey and mainly F1sen showed a positive effect improving the foamability in Spanish wines. F1 fractions also increased foamability of French wines, but in a more inefficient and irregular pattern. Moreover, the differentials of foam height (ΔFH) between “supplemented CO-wines” and CO-wines enhanced significantly in all the studied wines at several moments after supplementations with F1 fractions. F2 fractions gave enhancing effect only sporadically. Adding F1sen and F1sey, the foam height showed positive Pearson correlations with, respectively, (i) polysaccharides rich in arabinose and galactose percentage and (ii) the number average molar mass of polysaccharides. But after F1 supplementations, the mannoproteins percentage in base wines affected negatively their foamability. The Proteins %, the hydrophobic score, the volumetric properties, the molar masses, the high molar mass ranges and the content of several amino acids of gums fractions affected positively the foamability in different wines, whereas it was negatively affected by the sugars %.Concluding, sparkling base wine foamabilities strongly depend on the wine and the gum fraction addition, but also on their relationship.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Apolinar-Valiente, Thomas Salmo, Pascale Williams,  Michaël Nigen, Christian Sanchez, Thierry Doco,  Richard Marchal.

UMR-1208/IATE, Montpellier SupAgro, France.LOCA, Université de Reims, France. UMR-1083/SPO, INRAE-Montpellier, France. UMR-1208/IATE, Université Montpellier, France. UMR-1208/IATE, Université Montpellier, France. UMR-1083/SPO, INRAE-Montpellier, France. LVBE, Université de Haute-Alsace, Colmar, France.

Contact the author

Keywords

sparkling base wine; foam; acacia gums; ion exchange chromatography; macromolecules; sec-malls; biochemical properties; structural features

Citation

Related articles…

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.

Aptitude du cépage Chenin à l’élaboration de vins liquoreux en relation avec certaines unités terroirs de base de A.O.C. Coteaux du Layon

Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.