New acacia gums fractions: how their features affect the foamability of sparkling base wines?

Abstract

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation, but this procedure also leads to a drastic loss of foamability2. Acacia gums improve the foamability of some sparkling base wines treated with bentonite3. Acacia gums are already authorized as additives in wine production4. We studied how the addition of new fractions from Acacia gums affected the wines foamability. Our work deepens the relationship between wine foamability and gums fractions properties. Eight sparkling base wines were elaborated by the traditional white winemaking method. Three of them were elaborated in three different regions from Spain: Malaga using Moscatel grapes as well as Saragossa and Tarragona (TA), both using Macabeo grapes. The other five base wines were elaborated in the French region of Champagne using Chardonnay (4) and Pinot noir (1) grapes. They were treated with bentonite, stirred and filtered. Acacia senegal (Asen) and Acacia seyal (Asey) gums were fractionated by Ion Exchange Chromatography giving two high (F1sen and F1sey) and two low (F2sen and F2sey) molar mass fractions. Fractions and sparkling base wines were deeply characterized. Four Acacia gums fractions were separately added to wines (300 mg·L-1), resulting in “supplemented CO-wines”. Based on shaking test, wine was vigorously hand-shaken in closed tubes. The foam height at 5 and every 10 seconds during 90 seconds was measured (all in triplicate). The maximum foam height was improved in 11 out of the 16 supplementations (69%) with F1 fractions, which were the fractions with high protein amount and high molar mass. F1sey and mainly F1sen showed a positive effect improving the foamability in Spanish wines. F1 fractions also increased foamability of French wines, but in a more inefficient and irregular pattern. Moreover, the differentials of foam height (ΔFH) between “supplemented CO-wines” and CO-wines enhanced significantly in all the studied wines at several moments after supplementations with F1 fractions. F2 fractions gave enhancing effect only sporadically. Adding F1sen and F1sey, the foam height showed positive Pearson correlations with, respectively, (i) polysaccharides rich in arabinose and galactose percentage and (ii) the number average molar mass of polysaccharides. But after F1 supplementations, the mannoproteins percentage in base wines affected negatively their foamability. The Proteins %, the hydrophobic score, the volumetric properties, the molar masses, the high molar mass ranges and the content of several amino acids of gums fractions affected positively the foamability in different wines, whereas it was negatively affected by the sugars %.Concluding, sparkling base wine foamabilities strongly depend on the wine and the gum fraction addition, but also on their relationship.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Apolinar-Valiente, Thomas Salmo, Pascale Williams,  Michaël Nigen, Christian Sanchez, Thierry Doco,  Richard Marchal.

UMR-1208/IATE, Montpellier SupAgro, France.LOCA, Université de Reims, France. UMR-1083/SPO, INRAE-Montpellier, France. UMR-1208/IATE, Université Montpellier, France. UMR-1208/IATE, Université Montpellier, France. UMR-1083/SPO, INRAE-Montpellier, France. LVBE, Université de Haute-Alsace, Colmar, France.

Contact the author

Keywords

sparkling base wine; foam; acacia gums; ion exchange chromatography; macromolecules; sec-malls; biochemical properties; structural features

Citation

Related articles…

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Effects of soil and climate on wine style in the Breede River Valley of South Africa: Sauvignon blanc and Cabernet-Sauvignon

Les effets du sol et du climat sur le style de vin ont été évalués pour des vignes irriguées à deux endroits différents de la vallée de la Breede, en Afrique du Sud. L’un des 2 endroits est cependant plus froid que l’autre, principalement en raison de températures nocturnes plus basses.

Grapevine downy mildew development as affected by chitosan spray treatments and metabolomics implications

Chitosan has been shown to enhance grapevine tolerance toward downy mildew while reducing the environmental impact of traditional protection products.

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.