Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 New acacia gums fractions: how their features affect the foamability of sparkling base wines?

New acacia gums fractions: how their features affect the foamability of sparkling base wines?

Abstract

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation, but this procedure also leads to a drastic loss of foamability2. Acacia gums improve the foamability of some sparkling base wines treated with bentonite3. Acacia gums are already authorized as additives in wine production4. We studied how the addition of new fractions from Acacia gums affected the wines foamability. Our work deepens the relationship between wine foamability and gums fractions properties. Eight sparkling base wines were elaborated by the traditional white winemaking method. Three of them were elaborated in three different regions from Spain: Malaga using Moscatel grapes as well as Saragossa and Tarragona (TA), both using Macabeo grapes. The other five base wines were elaborated in the French region of Champagne using Chardonnay (4) and Pinot noir (1) grapes. They were treated with bentonite, stirred and filtered. Acacia senegal (Asen) and Acacia seyal (Asey) gums were fractionated by Ion Exchange Chromatography giving two high (F1sen and F1sey) and two low (F2sen and F2sey) molar mass fractions. Fractions and sparkling base wines were deeply characterized. Four Acacia gums fractions were separately added to wines (300 mg·L-1), resulting in “supplemented CO-wines”. Based on shaking test, wine was vigorously hand-shaken in closed tubes. The foam height at 5 and every 10 seconds during 90 seconds was measured (all in triplicate). The maximum foam height was improved in 11 out of the 16 supplementations (69%) with F1 fractions, which were the fractions with high protein amount and high molar mass. F1sey and mainly F1sen showed a positive effect improving the foamability in Spanish wines. F1 fractions also increased foamability of French wines, but in a more inefficient and irregular pattern. Moreover, the differentials of foam height (ΔFH) between “supplemented CO-wines” and CO-wines enhanced significantly in all the studied wines at several moments after supplementations with F1 fractions. F2 fractions gave enhancing effect only sporadically. Adding F1sen and F1sey, the foam height showed positive Pearson correlations with, respectively, (i) polysaccharides rich in arabinose and galactose percentage and (ii) the number average molar mass of polysaccharides. But after F1 supplementations, the mannoproteins percentage in base wines affected negatively their foamability. The Proteins %, the hydrophobic score, the volumetric properties, the molar masses, the high molar mass ranges and the content of several amino acids of gums fractions affected positively the foamability in different wines, whereas it was negatively affected by the sugars %.Concluding, sparkling base wine foamabilities strongly depend on the wine and the gum fraction addition, but also on their relationship.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Apolinar-Valiente, Thomas Salmo, Pascale Williams,  Michaël Nigen, Christian Sanchez, Thierry Doco,  Richard Marchal.

UMR-1208/IATE, Montpellier SupAgro, France.LOCA, Université de Reims, France. UMR-1083/SPO, INRAE-Montpellier, France. UMR-1208/IATE, Université Montpellier, France. UMR-1208/IATE, Université Montpellier, France. UMR-1083/SPO, INRAE-Montpellier, France. LVBE, Université de Haute-Alsace, Colmar, France.

Contact the author

Keywords

sparkling base wine; foam; acacia gums; ion exchange chromatography; macromolecules; sec-malls; biochemical properties; structural features

Citation

Related articles…

Aspect juridiques des terroirs

Le “terroir” est dans tous les discours, les articles, les étiquettes et les publicités. Le voca­ble est en situation d’utilisation euphorique. Indiscutablement l’emploi historique est agri­cole, puis viticole, mais il n’est jamais juridique.

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

Study of Malvasia di Candia Aromatica shelf-life: effect of time and temperature on aroma compounds through an HS-SPME GCxGC-Ms approach

Young white wines should be consumed within a short time after bottling to avoid loss of their fresh, fruity attributes. Shelf-life of white wines can be extended if they are stored under suitable conditions of time and temperature prior to consumption.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

Evaluation of the site index model for viticultural zoning

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande.