New acacia gums fractions: how their features affect the foamability of sparkling base wines?

Abstract

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation, but this procedure also leads to a drastic loss of foamability2. Acacia gums improve the foamability of some sparkling base wines treated with bentonite3. Acacia gums are already authorized as additives in wine production4. We studied how the addition of new fractions from Acacia gums affected the wines foamability. Our work deepens the relationship between wine foamability and gums fractions properties. Eight sparkling base wines were elaborated by the traditional white winemaking method. Three of them were elaborated in three different regions from Spain: Malaga using Moscatel grapes as well as Saragossa and Tarragona (TA), both using Macabeo grapes. The other five base wines were elaborated in the French region of Champagne using Chardonnay (4) and Pinot noir (1) grapes. They were treated with bentonite, stirred and filtered. Acacia senegal (Asen) and Acacia seyal (Asey) gums were fractionated by Ion Exchange Chromatography giving two high (F1sen and F1sey) and two low (F2sen and F2sey) molar mass fractions. Fractions and sparkling base wines were deeply characterized. Four Acacia gums fractions were separately added to wines (300 mg·L-1), resulting in “supplemented CO-wines”. Based on shaking test, wine was vigorously hand-shaken in closed tubes. The foam height at 5 and every 10 seconds during 90 seconds was measured (all in triplicate). The maximum foam height was improved in 11 out of the 16 supplementations (69%) with F1 fractions, which were the fractions with high protein amount and high molar mass. F1sey and mainly F1sen showed a positive effect improving the foamability in Spanish wines. F1 fractions also increased foamability of French wines, but in a more inefficient and irregular pattern. Moreover, the differentials of foam height (ΔFH) between “supplemented CO-wines” and CO-wines enhanced significantly in all the studied wines at several moments after supplementations with F1 fractions. F2 fractions gave enhancing effect only sporadically. Adding F1sen and F1sey, the foam height showed positive Pearson correlations with, respectively, (i) polysaccharides rich in arabinose and galactose percentage and (ii) the number average molar mass of polysaccharides. But after F1 supplementations, the mannoproteins percentage in base wines affected negatively their foamability. The Proteins %, the hydrophobic score, the volumetric properties, the molar masses, the high molar mass ranges and the content of several amino acids of gums fractions affected positively the foamability in different wines, whereas it was negatively affected by the sugars %.Concluding, sparkling base wine foamabilities strongly depend on the wine and the gum fraction addition, but also on their relationship.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Apolinar-Valiente, Thomas Salmo, Pascale Williams,  Michaël Nigen, Christian Sanchez, Thierry Doco,  Richard Marchal.

UMR-1208/IATE, Montpellier SupAgro, France.LOCA, Université de Reims, France. UMR-1083/SPO, INRAE-Montpellier, France. UMR-1208/IATE, Université Montpellier, France. UMR-1208/IATE, Université Montpellier, France. UMR-1083/SPO, INRAE-Montpellier, France. LVBE, Université de Haute-Alsace, Colmar, France.

Contact the author

Keywords

sparkling base wine; foam; acacia gums; ion exchange chromatography; macromolecules; sec-malls; biochemical properties; structural features

Citation

Related articles…

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

Oenological potential of cv. Tortojona: A minority grape variety from Extremadura, southwest Spain

This work, included in the VAVEGEX project, aims to evaluate the oenological, phenolic, chromatic and sensory characteristics of the grapes, must and wines produced from cv. Tortojona, minority variety grown in Extremadura region (Southwest, Spain).

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.