Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

Abstract

AIM: In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.

METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

RESULTS: The use of different strains on the three base wines resulted in differences in macromolecular content and sensory characteristics of wines. The foamability was mostly unaffected by the strain used, however some effect on foam stability was noticeable, likely due to the differences in polysaccharides released into the wines by the yeast strains. Chemically, the yeast strains did not result in significant differences upon on the main wine parameters, while the wines exhibited different sensory characteristics in terms of effervescence and pleasantness.

CONCLUSIONS:

Novel interspecific yeast hybrids can be used for the elaboration of sparkling wines as they provided wines with novel flavour and aroma attributes which affected sensory characteristics while retaining wine chemical characteristics similar to those of commonly used commercial Saccharomyces cerevisiae strains

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matteo Marangon, Poppy SEELEY, Tony MILANOWSKI,  Jenny BELLON,  Giuseppina P. PARPINELLO

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Italy
-Plumpton College, England , Department of Agricultural and Food Sciences, University of Bologna, Italy
-Rathfinny Wine Estate, England Arianna RICCI, Department of Agricultural and Food Sciences, University of Bologna, Italy
-The Australian Wine Research Institute, Adelaide, Australia
-Department of Agricultural and Food Sciences, University of Bologna, Italy

Contact the author

Keywords

sparkling wine, interspecific yeast hybrids, foam, phenolics, macromolecules

Citation

Related articles…

Leveraging the grapevine drought response to increase vineyard sustainability

In this video recording of the IVES science meeting 2024, Silvina Dayer (PhD in Agronomy, Les Sanctuaires du Mirazur-Groupe Mauro Colagreco, Menton, France) speaks about grapevine drought response to increase vineyard sustainability. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

The Gibberellic-Acid Insensitive gene Vvgai1 impacts both vegetative growth and organogenesis rate in Vitis labruscana

Context and purpose of the study. As other perennial crops grapevine is facing the challenges of climate changes. One of the major issues is global warming and variations of the water budget.

Bioprotection and oenological tannins association to protect Rosé wine color

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.