Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Abstract

AIM: Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging.

METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.

RESULTS: A general trend between the toasting levels and the individual ellagitannins content and composition was observed. Indeed “Eau-de-vie” aged in light toasted barrel has 40% higher castalagin content than in high toasting. During spirit aging, native ellagitannins content decreases over time. After two years, only castalagin remains quantifiable, suggesting that they undergo transformations leading to the formation of new compounds. Among them, whisky tannin B and A ([M-H]- ion peak at m/z 977.0896 and m/z 675.0834 respectively), resulting from the ethanol/castalagin or castalin reaction as well as some ellagitannin oxidation products like dehydrocastalagin and dehydroroburin D were identified for the first time in Cognac “eaux-de-vie” samples. The kinetic of the above compounds is in progress and the influence of both aging and barrel toasting is being researched.

CONCLUSIONS:

This work brings new insights on the Cognac ellagitannins content and how these molecules are influenced by aging and barrel toasting. Tastings will be performed to understand the organoleptic impact of these compounds.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mathilde Gadrat, Joel Lavergne, Catherine Emo, Pierre-Louis Teissedre, Kléopatra Chira,

1. Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2.   Courvoisier SAS, 2 places du château, 16200 Jarnac, France ,
Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

cognac, ellagitannins, mass spectrometry, toasting

Citation

Related articles…

Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study was to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the polyphenolic composition of Tempranillo red wines.

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders

Determination of steviol glycosides in wine by HPLC

The SCL laboratory in Bordeaux is one of the two official control laboratories for wine and wine products in france, under the authority of the ministry of finance and two of its general directorates: the DGCCRF (directorate general for competition, consumer affairs and fraud control) and the DGDDI (directorate general of customs and excise duties). In this capacity, it verifies the regulatory compliance of wines and investigates any possible falsifications or fraud. Steviol glycosides are natural sweeteners that are not authorized as additives in wine.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.