Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Abstract

AIM: Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging.

METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.

RESULTS: A general trend between the toasting levels and the individual ellagitannins content and composition was observed. Indeed “Eau-de-vie” aged in light toasted barrel has 40% higher castalagin content than in high toasting. During spirit aging, native ellagitannins content decreases over time. After two years, only castalagin remains quantifiable, suggesting that they undergo transformations leading to the formation of new compounds. Among them, whisky tannin B and A ([M-H]- ion peak at m/z 977.0896 and m/z 675.0834 respectively), resulting from the ethanol/castalagin or castalin reaction as well as some ellagitannin oxidation products like dehydrocastalagin and dehydroroburin D were identified for the first time in Cognac “eaux-de-vie” samples. The kinetic of the above compounds is in progress and the influence of both aging and barrel toasting is being researched.

CONCLUSIONS:

This work brings new insights on the Cognac ellagitannins content and how these molecules are influenced by aging and barrel toasting. Tastings will be performed to understand the organoleptic impact of these compounds.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mathilde Gadrat, Joel Lavergne, Catherine Emo, Pierre-Louis Teissedre, Kléopatra Chira,

1. Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2.   Courvoisier SAS, 2 places du château, 16200 Jarnac, France ,
Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

cognac, ellagitannins, mass spectrometry, toasting

Citation

Related articles…

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.

The problem of the increasing pH in sparkling wines caused by climate change: use of cationic exchange to correct it

In recent years, the increase in temperature and the changes in rainfall distribution caused by climate change are affecting vine and grape physiology and are consequently impacting wine composition and quality (Schultz, 2000; Jones et al., 2005).

Using Landsat LST data to predict vineyard productivity anomalies: A case study in the Euganean Hills wine region, Italy

In the current scenario of climatic variability, even though the vine (Vitis vinifera) is a species generally considered very fertile, the process of bud differentiation is particularly influenced by the weather trend not only of the current year but also of the previous one.