Vinhos de talha: to pitch or not to pitch

Abstract

In Alentejo, south of Portugal there is a traditional way of fermenting wines in clay vessels, known as “Vinhos de Talha”. Clay vessels were traditionally impermeabilized using pine pitch, creating a barrier between the fermenting must and the clay. Due to this unusual production technology that uses of clay vessels, instead of inox or wood vessels, “Vinhos de Talha” present unique characteristics increasingly appreciated by national and international consumers when compared with wine obtained by the said traditional methods of winemaking. Although the positive consumers feedback, there is little literature about the physical-chemical characteristics of these wines (Martins et al, 2018; Cabrita et al, 2018). This work aims to characterize the volatile composition of white wines produced in clay vessels with different coatings and to contribute to the knowledge and preservation of these wines that are a unique cultural heritage. Wine samples were produced during 2019 vintage from white grapes, using the traditional technology associated to these wines. The clay vessels used have different coatings: epoxy resin, bee wax, new pitch, old pitch and no coating. Wines were analyzed after the opening of the vessels in November. Oenological parameters as alcohol, pH, total and volatile acidity, sulphur dioxide, and reducing sugars were measured according to OIV (OIV, 2014) The volatile composition was analyzed by headspace solid phase microextraction hyphenated with gas chromatography / mass spectrometry (HS-SPME-GC/MS), following a methodology based on Martins et al (2018). A linear discriminant analysis was performed using IBM SPSS Statistics 20, and as it is a supervised technique where there is the need to assign groups of variables to the data set, we considered the volatile compounds in wines (independent variables), to classify different types of wines (grouping variable), according to the vessel coating. LDA shows that wines can be discriminated according to different clay vessels impermeabilization materials, being the most similar the ones from clay vessels with no coating and the ones from clay vessels with old pitch.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria João Cabrita

MED – Mediterranean Institute for Agriculture, Environment and Development, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.,Raquel GARCIA MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal. Flávia FREITAS; Marco Gomes da SILVA LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

Contact the author

Keywords

vinhos de talha; volatile profiling; hs-spme; gc/ms

Citation

Related articles…

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.