Vinhos de talha: to pitch or not to pitch

Abstract

In Alentejo, south of Portugal there is a traditional way of fermenting wines in clay vessels, known as “Vinhos de Talha”. Clay vessels were traditionally impermeabilized using pine pitch, creating a barrier between the fermenting must and the clay. Due to this unusual production technology that uses of clay vessels, instead of inox or wood vessels, “Vinhos de Talha” present unique characteristics increasingly appreciated by national and international consumers when compared with wine obtained by the said traditional methods of winemaking. Although the positive consumers feedback, there is little literature about the physical-chemical characteristics of these wines (Martins et al, 2018; Cabrita et al, 2018). This work aims to characterize the volatile composition of white wines produced in clay vessels with different coatings and to contribute to the knowledge and preservation of these wines that are a unique cultural heritage. Wine samples were produced during 2019 vintage from white grapes, using the traditional technology associated to these wines. The clay vessels used have different coatings: epoxy resin, bee wax, new pitch, old pitch and no coating. Wines were analyzed after the opening of the vessels in November. Oenological parameters as alcohol, pH, total and volatile acidity, sulphur dioxide, and reducing sugars were measured according to OIV (OIV, 2014) The volatile composition was analyzed by headspace solid phase microextraction hyphenated with gas chromatography / mass spectrometry (HS-SPME-GC/MS), following a methodology based on Martins et al (2018). A linear discriminant analysis was performed using IBM SPSS Statistics 20, and as it is a supervised technique where there is the need to assign groups of variables to the data set, we considered the volatile compounds in wines (independent variables), to classify different types of wines (grouping variable), according to the vessel coating. LDA shows that wines can be discriminated according to different clay vessels impermeabilization materials, being the most similar the ones from clay vessels with no coating and the ones from clay vessels with old pitch.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria João Cabrita

MED – Mediterranean Institute for Agriculture, Environment and Development, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.,Raquel GARCIA MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal. Flávia FREITAS; Marco Gomes da SILVA LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

Contact the author

Keywords

vinhos de talha; volatile profiling; hs-spme; gc/ms

Citation

Related articles…

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.

Water status modelling: impact of local rainfall variability in Burgundy (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.