Vinhos de talha: to pitch or not to pitch

Abstract

In Alentejo, south of Portugal there is a traditional way of fermenting wines in clay vessels, known as “Vinhos de Talha”. Clay vessels were traditionally impermeabilized using pine pitch, creating a barrier between the fermenting must and the clay. Due to this unusual production technology that uses of clay vessels, instead of inox or wood vessels, “Vinhos de Talha” present unique characteristics increasingly appreciated by national and international consumers when compared with wine obtained by the said traditional methods of winemaking. Although the positive consumers feedback, there is little literature about the physical-chemical characteristics of these wines (Martins et al, 2018; Cabrita et al, 2018). This work aims to characterize the volatile composition of white wines produced in clay vessels with different coatings and to contribute to the knowledge and preservation of these wines that are a unique cultural heritage. Wine samples were produced during 2019 vintage from white grapes, using the traditional technology associated to these wines. The clay vessels used have different coatings: epoxy resin, bee wax, new pitch, old pitch and no coating. Wines were analyzed after the opening of the vessels in November. Oenological parameters as alcohol, pH, total and volatile acidity, sulphur dioxide, and reducing sugars were measured according to OIV (OIV, 2014) The volatile composition was analyzed by headspace solid phase microextraction hyphenated with gas chromatography / mass spectrometry (HS-SPME-GC/MS), following a methodology based on Martins et al (2018). A linear discriminant analysis was performed using IBM SPSS Statistics 20, and as it is a supervised technique where there is the need to assign groups of variables to the data set, we considered the volatile compounds in wines (independent variables), to classify different types of wines (grouping variable), according to the vessel coating. LDA shows that wines can be discriminated according to different clay vessels impermeabilization materials, being the most similar the ones from clay vessels with no coating and the ones from clay vessels with old pitch.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria João Cabrita

MED – Mediterranean Institute for Agriculture, Environment and Development, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.,Raquel GARCIA MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal. Flávia FREITAS; Marco Gomes da SILVA LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

Contact the author

Keywords

vinhos de talha; volatile profiling; hs-spme; gc/ms

Citation

Related articles…

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Responses of grapevine cells to physiological doses of ethanol, among which induced resistance to heat stress

Grapevine naturally endures stresses like heat, drought, and hypoxia. A recent study showed very low oxygen levels inside grape berries, linked to ethanol content.

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

Use of minority grape varieties to mitigate climate change and achievement of balanced wines in Castilla y León (Spain)

Castilla y León is the third longest region in the European Union, having more than 85.000 vineyard hectares.