Impact of winemaking processes on wine polysaccharides, improving by qNMR

Abstract

AIM: Today the knowledge in terms of molecular composition of the colloidal matrix is ​​not enough in order to control its stability, according to the number of winemaking and wine stabilization processes. The physico-chemical processes during the winemaking change the composition and quantity of wine macromolecules. The goal today is to determine which analytical techniques will allow to discriminate these winemaking processes in order to better understand their impact on colloidal matrix stability as well as which molecules are responsible for its instabilities.

METHODS: Wines obtained after conventional winemaking were subjected to different fining and chemical stabilization treatments. Different methods were used to investigate the wine macromolecular composition and stability after chemical stabilization, including quantitative and qualitative analyzes of total soluble polysaccharides by extraction under acidified ethanol, and by size exclusion separation as well as qNMR metabolomics.

RESULTS: Observation of a slight difference at the quantitative level using classical analysis between the winemaking processes was observed as well as a strong discrimination by qNMR metabolomics.

CONCLUSIONS:

Analyses of total soluble polysaccharide of wine after different treatment shows different types and amount of these molecules. The qNMR metabolomics confirme the discrimination between each treatment. It allows a strong discrimination and is a step towards in the identification of winemaking processes. More investigations still require to determine which are the key parameters involved the wine colloidal stability as well as the right stabilization products, physicochemical winemaking processes, depending on the wine. The qNMR allows to understand, improve and choose the vinifications processes and the physicochemical stabilization of the colloidal matrix of wines, while respecting the quality and typicity of the most Bordeaux wines.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jean Martin-Pernier

PhD student at UR oenology- ISVV, at univerité de Bordeaux,Ines Le MAO, PhD student at UR oenology- ISVV, at Université de Bordeaux Wiame EL-BATOUL, trainee at UR oenology- ISVV, at Université de Bordeaux Michael JOURDES, Maître de Conférences at Université de Bordeaux Tristan RICHARD, Professor at Université de Bordeaux Virginie MOINE, scientific director at BioLaffort Arnaud MASSOT, scientific officer at BioLaffort Gregory Da COSTA, associate professor at Université de Bordeaux Soizic LACAMPAGNE, research engineer at UR oenology- ISVV

Contact the author

Keywords

process, winemaking, nmr, macromolecules, wine, polysaccharide

Citation

Related articles…

Function, barriers, and the environmental benefits of reuse bottle system for wine

With 0.3 to 0.7 kg CO2eq per 0.75 L wine, the glass bottle is the main contributor to the carbon footprint of a bottle of wine.

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

Tropical wines have been produced in the São Francisco river Valley thirty years ago, in the Northeast of Brazil. The main grape cultivar used for red tropical wines is ‘Syrah’, but wines have presented fast evolution, if they were made in the first or second semester, due to the high values of pH in grapes and wines and high climate temperatures.

Postveraison shoot trimming in Tannat and Merlot: preliminary results on yield components, plant balance and berry composition

There is currently a trend towards the production of wines with low alcohol content. To achieve this, grapes with low sugar content must be used. There are techniques at the vineyard level that can delay ripening and avoid excessive sugar accumulation without, a priori, affecting the final polyphenol content. Postveraison shoot trimming (PVST) is experimentally evaluated for these purposes, but its impact under Uruguayan climatic conditions with high interannual variability is not known. The aim of this work is to assess the PVST in Tannat and Merlot cultivars and their impact on yield components, plant balance and berry primary composition. In this study, two commercial vineyards of 10 years old Tannat and Merlot (grafted on SO4) at Canelones Department were selected. During the 2020-201 growing season, grapevines were submitted to PVST when grapes reached 15º Brix. In a randomized block, trimmed (T) and control (C) plants were evaluated with three repetitions each cultivar. Evaluation of the evolution of primary berry composition during ripening, measurement of yield components and plant balance were performed. For both cultivars, PVST did not affect yield components. Merlot reached 5.4 kg per plant and Tannat 7.1 kg, with not statistical significance between treatments. However, statistical differences were observed in terms of plant balance. In Merlot Ravaz Index reached a difference of 5.3 (12.0 in T and 6.7 in C) meanwhile Tannat reached 3.5 of statistical difference (13.7 in T and 10.2 in C). The tendency to imbalance for the treated plants had an impact on the final grape composition. Merlot grapes showed statistical difference in final total acidity (0.3 g of difference between treatments) while treatments impact final sugar content on Tannat grapes (10.0 g of difference between treatments). Further studies are needed to assess the impact of different canopy management techniques in our conditions.