Impact of winemaking processes on wine polysaccharides, improving by qNMR

Abstract

AIM: Today the knowledge in terms of molecular composition of the colloidal matrix is ​​not enough in order to control its stability, according to the number of winemaking and wine stabilization processes. The physico-chemical processes during the winemaking change the composition and quantity of wine macromolecules. The goal today is to determine which analytical techniques will allow to discriminate these winemaking processes in order to better understand their impact on colloidal matrix stability as well as which molecules are responsible for its instabilities.

METHODS: Wines obtained after conventional winemaking were subjected to different fining and chemical stabilization treatments. Different methods were used to investigate the wine macromolecular composition and stability after chemical stabilization, including quantitative and qualitative analyzes of total soluble polysaccharides by extraction under acidified ethanol, and by size exclusion separation as well as qNMR metabolomics.

RESULTS: Observation of a slight difference at the quantitative level using classical analysis between the winemaking processes was observed as well as a strong discrimination by qNMR metabolomics.

CONCLUSIONS:

Analyses of total soluble polysaccharide of wine after different treatment shows different types and amount of these molecules. The qNMR metabolomics confirme the discrimination between each treatment. It allows a strong discrimination and is a step towards in the identification of winemaking processes. More investigations still require to determine which are the key parameters involved the wine colloidal stability as well as the right stabilization products, physicochemical winemaking processes, depending on the wine. The qNMR allows to understand, improve and choose the vinifications processes and the physicochemical stabilization of the colloidal matrix of wines, while respecting the quality and typicity of the most Bordeaux wines.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jean Martin-Pernier

PhD student at UR oenology- ISVV, at univerité de Bordeaux,Ines Le MAO, PhD student at UR oenology- ISVV, at Université de Bordeaux Wiame EL-BATOUL, trainee at UR oenology- ISVV, at Université de Bordeaux Michael JOURDES, Maître de Conférences at Université de Bordeaux Tristan RICHARD, Professor at Université de Bordeaux Virginie MOINE, scientific director at BioLaffort Arnaud MASSOT, scientific officer at BioLaffort Gregory Da COSTA, associate professor at Université de Bordeaux Soizic LACAMPAGNE, research engineer at UR oenology- ISVV

Contact the author

Keywords

process, winemaking, nmr, macromolecules, wine, polysaccharide

Citation

Related articles…

The social construction of wine-growing areas: the “Graves de Bordeaux”

«Graves de Bordeaux» est une des rares appellations à porter le nom d’un terroir, au sens agronomique du terme. Et ce territoire vitivinicole présente une relative unité géographique, de Langon à Bordeaux sur la rive gauche de la Garonne.

The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

Wine-grapes in the Willamette Valley, Oregon, are grown on three major soil parent materials: volcanic, marine sediments, and loess/volcanic.

Yield prediction assessment before bloom and at veraison in a cv. Airén high yielding vineyard in Toledo (La Mancha, Spain)

Anticipation in the possible responses of grapevines to environmental variations is key to adjust field work in view of a more effective management. This idea has been the driving force behind the current work, which seeks to understand the interaction patterns of the vine with its habitat throughout the growing cycle.

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults.

Satellite imagery : a tool for large scale vineyard management

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.