Impact of winemaking processes on wine polysaccharides, improving by qNMR

Abstract

AIM: Today the knowledge in terms of molecular composition of the colloidal matrix is ​​not enough in order to control its stability, according to the number of winemaking and wine stabilization processes. The physico-chemical processes during the winemaking change the composition and quantity of wine macromolecules. The goal today is to determine which analytical techniques will allow to discriminate these winemaking processes in order to better understand their impact on colloidal matrix stability as well as which molecules are responsible for its instabilities.

METHODS: Wines obtained after conventional winemaking were subjected to different fining and chemical stabilization treatments. Different methods were used to investigate the wine macromolecular composition and stability after chemical stabilization, including quantitative and qualitative analyzes of total soluble polysaccharides by extraction under acidified ethanol, and by size exclusion separation as well as qNMR metabolomics.

RESULTS: Observation of a slight difference at the quantitative level using classical analysis between the winemaking processes was observed as well as a strong discrimination by qNMR metabolomics.

CONCLUSIONS:

Analyses of total soluble polysaccharide of wine after different treatment shows different types and amount of these molecules. The qNMR metabolomics confirme the discrimination between each treatment. It allows a strong discrimination and is a step towards in the identification of winemaking processes. More investigations still require to determine which are the key parameters involved the wine colloidal stability as well as the right stabilization products, physicochemical winemaking processes, depending on the wine. The qNMR allows to understand, improve and choose the vinifications processes and the physicochemical stabilization of the colloidal matrix of wines, while respecting the quality and typicity of the most Bordeaux wines.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jean Martin-Pernier

PhD student at UR oenology- ISVV, at univerité de Bordeaux,Ines Le MAO, PhD student at UR oenology- ISVV, at Université de Bordeaux Wiame EL-BATOUL, trainee at UR oenology- ISVV, at Université de Bordeaux Michael JOURDES, Maître de Conférences at Université de Bordeaux Tristan RICHARD, Professor at Université de Bordeaux Virginie MOINE, scientific director at BioLaffort Arnaud MASSOT, scientific officer at BioLaffort Gregory Da COSTA, associate professor at Université de Bordeaux Soizic LACAMPAGNE, research engineer at UR oenology- ISVV

Contact the author

Keywords

process, winemaking, nmr, macromolecules, wine, polysaccharide

Citation

Related articles…

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.

Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Brandy is a spirit drink produced from wine spirit aged for at least six months in oak casks with a capacity of less than 1000 L and minimum alcohol by volume (ABV) of 36%. During the aging process, physicochemical and sensory changes take place. Manifested by colour, flavour or aroma variations that improve the quality of the initial distillate.

Un exemple de valorisation d’une étude de terroir au sein d’une unité coopérative de production à Saint Hilaire d’Ozilhan (Gard) dans les cotes du Rhône

The winegrowers of the intercommunal cooperative cellar of Saint Hilaire d’Ozilhan have been practicing terroir selection for ten years. Five years ago, after having equipped themselves with an efficient commercial structure, and anxious to improve knowledge of their terroirs and to better control quantitatively and qualitatively the range of typicality that they can develop, they asked the Syndicate Général des Vignerons Réunis des Côtes du Rhône and the Institut Coopératif du Vin to help them set up an approach to better judge the behavior of the Grenache and Syrah grape varieties in the different terroirs, then to enhance this work through the improving product quality.

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.