Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

Abstract

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines. This enhancement is also pointed out by the increasing production of sparkling wines by indigenous grape cultivars [4]. We have technologically characterized several autochthonous strains belonging to Saccharomyces cerevisiae species isolated in the Apulian region, firstly at the lab scale and, successively, tested in the winery for both induce alcoholic fermentation in base wine and re-fermentation of white and rosè sparkling wines. For the first time, we evaluated the fermentative properties of selected yeast strains, through a non-targeted metabolomic approach based on the correlation between the volatolomic profile determined by GC-MS and the chemical profile obtained by HPLC-HRMS. Also, we highlighted the important role of yeasts to enhance not only the volatolomic profile but also the phenolic fraction of fermented wines. This confirms that the choice of an autochthonous strain positively modulates the chemistry of wine, with a potential impact on the global organoleptic properties of the final sparkling wine. This is the first report on the use of autochthonous strains isolated in the Salento area (Apulia, Southern Italy) for secondary fermentation to produce sparkling wine. For the first time, to the best of our knowledge, the use of autochthonous strains in sparkling wine has been tested using an integrated non-target metabolomics approach. Acknowledgments: This work was partially supported by the Apulia Region projects: “Innovazione nella tradizione: tecnologie innovative per esaltare le qualità dei vini autoctoni spumante della murgia barese-INVISPUBA” (P.S.R. Puglia 2014/2020 -Misura 16.2).

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Tufariello 

CNR–Institute of Sciences of Food Production (ISPA), via Prov. le, Lecce-Monteroni, 73100 Lecce, Italy,Antonino Rizzuti, Politecnico di Bari, DICATECh, via Orabona 4, 701245 Bari, Italy; Biagia Musio, Politecnico di Bari, DICATECh, via Orabona 4, 701245 Bari, Italy; Vito Gallo: Politecnico di Bari, DICATECh, via Orabona 4, 701245 Bari, Italy—Innovative Solutions S.r.l., Spin off del Politecnico di Bari, zona H 150/B, 70015 Noci (BA), Italy Piero Mastrorilli: Politecnico di Bari, DICATECh, via Orabona 4, 701245 Bari, Italy—Innovative Solutions S.r.l., Spin off del Politecnico di Bari, zona H 150/B, 70015 Noci (BA), Italy; Vittorio Capozzi: CNR–Institute of Sciences of Food Production (ISPA), via Michele Protano, 71121 Foggia FG; Francesco Grieco: CNR–Institute of Sciences of Food Production (ISPA), via Prov. le, Lecce-Monteroni, 73100 Lecce, Italy

Contact the author

Keywords

sparkling wine, autochthonous yeast, volatolomic profile, phenolic fraction

Citation

Related articles…

Towards an ecological architecture inspired by underground cellars: An example of the thermal inertia of Moldovan underground cellars and new geothermal and Canadian well approaches

The search for underground shelters is one of the oldest forms of human habitation, providing refuge in extreme environments such as deserts and polar regions.

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.

Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Certain grape varieties contain negligible levels of isobutyl methoxypyrazine (IBMP) in grapes. However, it has long been known that grape stems

Grapevine varietal diversity as mitigation tool for climate change: Agronomic and oenologic potential of 14 foreign varieties grown in Languedoc region (France)

Climate change effects in Languedoc include an expected rise in temperatures, increased evapotranspiration as well as more severe and frequent climatic hazards, such as frost, drought periods and heat waves. For winegrowers theses phenomena impact both yield and quality, resulting in more frequent unbalanced wines. Research on identified mitigation tools for vineyard management is necessary to improve resilience of grapevine agrosystems. Varietal assortment is one of them. This study focuses on agronomic and oenologic potential of 14 foreign varieties grown in Languedoc French region. Fourteen grapevine varieties were monitored during 2021 from June until harvest on eight different sites, some of which occurring on more than one site adding up to 21 different modalities: 7 white varieties Alvarinho B, Assyrtiko B (2), Malvasia Istriana B, Parellada B, Verdejo B, Verdelho B, Xarello B, and 7 black varieties Saperavi N (2), Touriga nacional N, Baga N, Aleatico N, Montepulciano N (2), Primitivo N (3), Calabrese N (3). Varietals were compared through the following parameters: phenology was assessed by using the information collected in the Database Network of French Vine Conservatories (INRAE-SupAgro-IFV, 2005-2015). The number of inflorescences for shoots from secondary buds and bourillons and suckers were observed to assess post-bud break frost tolerance potential. Grapevine water status was studied through stem water potential measurement, observation of foliage symptoms of drought, and 𝛿13C on must. Frequencies and intensities of downy mildew, powdery mildew, and black rot attacks were estimated before harvest on leaves and clusters and botrytis at harvest to assess disease susceptibilities. Berry composition was monitored from end of veraison until harvest. Yield and mean bunch weight were also calculated. Varieties were then ranked on a 1-4 scale for each parameter and compared through PCA. Forty two stations of the Mediterranean basin were compared by PCA with the Multicriteria Climatic Classification indicators in order to confront the collected information during 2021 campaign to the hypothesis that plants coming from dry and hot regions are genetically adapted to such climatic conditions.

Delayed irrigation nearly doubles yield loss compared to anthocyanin gain in Southern Oregon Pinot noir

Irrigation initiation timing is a critical annual management decision that has cascading effects on grapevine productivity and wine quality.