Electrochemical diversity of italian white wines

Abstract

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

METHODS: The electrochemical properties of wine phenolics, and relative reducing strengths, have been examined using Cyclic Voltammetry (CV). Methods based upon disposable electrodes have been used, including carbon paste electrodes with undiluted wines.4 Cyclic voltammograms of more than 50 Italian white wines belonging to different appellations were collected and their features were analysed in conjunction with other parameters such as total phenolics, free and total SO2, acetaldehyde, and ascorbic acid. The wines were collected in the framework of the activities of the D-Wines (Diversity of Italian wines) project.

RESULTS: The results obtained indicated a great diversity of voltametric responses, although the ability to identify electrochemical features that were typical of wine types was rather limited with raw data. To obtain a higher number of discriminant features, derivative voltammograms were built and studied by multivariate statistical analysis. The region of the voltammograms comprised between 0-700 mV was found to contain several highly discriminating features across the entire dataset. Some of key features were identified and wines were classified accordingly.

CONCLUSIONS:

It is expected that these results will help developing rapid novel tools for phenolics analysis in the wine industry, where results from chemistry methods, or chromatographic procedures, take some time to obtain. Further research using electrochemical tools to probe ageing processes also has considerable prospects for shedding light on how to enhance quality characteristics in wine.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diletta, Invincibile 

University of Verona,Davide, SLAGHENAUFI, University of Verona Giovanni, Luzzini, University of Verona Marangon, Matteo, University of Padua Mattivi, Fulvio, University of Trento Moio, Luigi, University of Naples ‘Federico II’ Versari, Andrea, University of Bologna Rio Segade, Susana, University of Turin Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

white wine, carbon paste electrodes, phenolic compounds, cyclic voltammetry

Citation

Related articles…

Multicriteria assessment of 11 agroecological viticulture systems during six years

Context and purpose of the study. Modern conventional agriculture, including viticulture, relies greatly on the use of chemical inputs, especially synthetic pesticides.

Geological characterization of plot belonging to the left bank terraces terroir of the Gaillac vineyard (Tarn, Midi-Pyrénées). Consequences on determination of choice of vegetative material

Detailed geological analyses of a plot belonging to the « AOC Gaillac » area have been carried out. This plot belongs to the left bank terraces of the Tarn River which coinciding with one of the three main terroirs of the AOC area. It is localised on the rissian-aged (≈ 200 000 yrs B.P.)

Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

In some white wines, malolactic fermentation (MLF) is very interesting, and for low pH wines this process is particularly difficult. Although MLF is generally not recommended for sparkling white wine, some winemakers prefer to promote MLF to contribute to organoleptic complexity. Oenococcus oeni is generally the bacterium of choice for MLF.

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.