Electrochemical diversity of italian white wines

Abstract

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

METHODS: The electrochemical properties of wine phenolics, and relative reducing strengths, have been examined using Cyclic Voltammetry (CV). Methods based upon disposable electrodes have been used, including carbon paste electrodes with undiluted wines.4 Cyclic voltammograms of more than 50 Italian white wines belonging to different appellations were collected and their features were analysed in conjunction with other parameters such as total phenolics, free and total SO2, acetaldehyde, and ascorbic acid. The wines were collected in the framework of the activities of the D-Wines (Diversity of Italian wines) project.

RESULTS: The results obtained indicated a great diversity of voltametric responses, although the ability to identify electrochemical features that were typical of wine types was rather limited with raw data. To obtain a higher number of discriminant features, derivative voltammograms were built and studied by multivariate statistical analysis. The region of the voltammograms comprised between 0-700 mV was found to contain several highly discriminating features across the entire dataset. Some of key features were identified and wines were classified accordingly.

CONCLUSIONS:

It is expected that these results will help developing rapid novel tools for phenolics analysis in the wine industry, where results from chemistry methods, or chromatographic procedures, take some time to obtain. Further research using electrochemical tools to probe ageing processes also has considerable prospects for shedding light on how to enhance quality characteristics in wine.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diletta, Invincibile 

University of Verona,Davide, SLAGHENAUFI, University of Verona Giovanni, Luzzini, University of Verona Marangon, Matteo, University of Padua Mattivi, Fulvio, University of Trento Moio, Luigi, University of Naples ‘Federico II’ Versari, Andrea, University of Bologna Rio Segade, Susana, University of Turin Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

white wine, carbon paste electrodes, phenolic compounds, cyclic voltammetry

Citation

Related articles…

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors,

Approche méthodologique concernant une caractérisation sensorielle de vins rouges de l’Anjou

Face à une concurrence de plus en plus rude entre pays producteurs, le vignoble de l’Anjou, déjà riche par sa diversité, souhaite renforcer sa logique de vins d’ A.O.C., notamment au travers de ses vins rouges.

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape.