Aromatic profile evolution of corvina, corvinone and rondinella grapes during withering

Abstract

AIM AND METHODS: Grape withering is one of the key steps in the production of the most renowned red wines of the Valpolicella area, namely Amarone and Recioto. This practice, which was already used since Roman times, entails important modifications in grape composition and in the chemical and sensorial characteristics of the corresponding wines, especially in terms of aromatic profile. The aim of this research is evaluating the aromatic evolution during grape withering of the three main varieties used in Valpolicella wines: Corvina, Corvinone and Rondinella.Samples of the three varieties were analyzed at harvest and at different stages of withering, namely10%, 20% and 30% of weight loss. Free and glycosidically bound compounds were extracted and analyzed using Gas Chromatography- Mass Spectrometry (GC-MS).

RESULTS: For all the samples the data were normalized to eliminate the effect of concentration due to grape dehydration. Terpene content and evolution varied considerably in relationship to grape variety. Corvinone was richer in cyclic terpenes (including phellandrene, limonene, and cymene) and they decreased during withering. Conversely, Corvina was richer in linalool, with a peak at 20% of weight loss. Also glycosylated nerol and geraniol were more abundant in Corvinone grapes, peaking at 20% of weight loss. Complex patterns of evolution were also observed for free and glycosylated benzenoids (mostly benzyl alcohol, vanillin, and methyl vanillate), which increased in Corvina and Corvinone while tended to decrease in Rondinella.

CONCLUSIONS:

The present results highlighted a variability between the different classes of aromatic compounds and between the three different varieties due to metabolic changes that do not depend solely on grape dehydration. As such, the results highlight the need for further investigations in the aromatic evolution of the grapes during the grape withering, with the aim of developed improved control strategies for Amarone and Recioto production.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jessica Anahi Samaniego Solis 

University Of Verona – University of Verona, Giacomo CRISTANELLI, University of Verona Giovanni LUZZINI, University of Verona Davide SLAGHENAUFI, University of Verona Maurizio UGLIANO, University of Verona

Contact the author

Keywords

grape withering; terpenes; corvina; corvinone; rondinella

Citation

Related articles…

The role of protein-phenolic interactions in the formation of red wine colloidal particles

Colloids play a crucial role in red wine quality and stability, yet their composition and formation mechanisms remain poorly understood.

Better understanding on the fungal chitosan and derivatives antiseptic effect on Brettanomyces bruxellensis in wine.

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011).

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

Cultivo de la Malvasia en Tenerife

El archipiélago Canario, conocido en el pasado como las Islas del Vino, fue una gran potencia en la elaboración y comercialización del vino, sobre todo de caldos elaborados con la variedad Malvasía.