Aromatic profile evolution of corvina, corvinone and rondinella grapes during withering

Abstract

AIM AND METHODS: Grape withering is one of the key steps in the production of the most renowned red wines of the Valpolicella area, namely Amarone and Recioto. This practice, which was already used since Roman times, entails important modifications in grape composition and in the chemical and sensorial characteristics of the corresponding wines, especially in terms of aromatic profile. The aim of this research is evaluating the aromatic evolution during grape withering of the three main varieties used in Valpolicella wines: Corvina, Corvinone and Rondinella.Samples of the three varieties were analyzed at harvest and at different stages of withering, namely10%, 20% and 30% of weight loss. Free and glycosidically bound compounds were extracted and analyzed using Gas Chromatography- Mass Spectrometry (GC-MS).

RESULTS: For all the samples the data were normalized to eliminate the effect of concentration due to grape dehydration. Terpene content and evolution varied considerably in relationship to grape variety. Corvinone was richer in cyclic terpenes (including phellandrene, limonene, and cymene) and they decreased during withering. Conversely, Corvina was richer in linalool, with a peak at 20% of weight loss. Also glycosylated nerol and geraniol were more abundant in Corvinone grapes, peaking at 20% of weight loss. Complex patterns of evolution were also observed for free and glycosylated benzenoids (mostly benzyl alcohol, vanillin, and methyl vanillate), which increased in Corvina and Corvinone while tended to decrease in Rondinella.

CONCLUSIONS:

The present results highlighted a variability between the different classes of aromatic compounds and between the three different varieties due to metabolic changes that do not depend solely on grape dehydration. As such, the results highlight the need for further investigations in the aromatic evolution of the grapes during the grape withering, with the aim of developed improved control strategies for Amarone and Recioto production.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jessica Anahi Samaniego Solis 

University Of Verona – University of Verona, Giacomo CRISTANELLI, University of Verona Giovanni LUZZINI, University of Verona Davide SLAGHENAUFI, University of Verona Maurizio UGLIANO, University of Verona

Contact the author

Keywords

grape withering; terpenes; corvina; corvinone; rondinella

Citation

Related articles…

Changes in grape-associated microbiome as a consequence of post-harvest withering

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1].

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

Investigating the conceptualization and practices linked to peppery notes in Syrah red wines by French winemakers from different regions

The peppery attribute is often used to describe the aroma of Syrah wines. Rotundone was identified as the main aroma compound responsible for these notes. A significant percentage of anosmic respondents to this molecule was reported in previous studies. However, in most cases, these anosmic respondents, formally tested through three-alternative forced choice (3AFC), frequently declare being able to perceive peppery notes in wines. The main objective of this study was to investigate how anosmic French producers from two different regions conceptualize the peppery notes in Syrah red wines, and how they link it to production practices in comparison with non-anosmic producers.