Aromatic profile evolution of corvina, corvinone and rondinella grapes during withering

Abstract

AIM AND METHODS: Grape withering is one of the key steps in the production of the most renowned red wines of the Valpolicella area, namely Amarone and Recioto. This practice, which was already used since Roman times, entails important modifications in grape composition and in the chemical and sensorial characteristics of the corresponding wines, especially in terms of aromatic profile. The aim of this research is evaluating the aromatic evolution during grape withering of the three main varieties used in Valpolicella wines: Corvina, Corvinone and Rondinella.Samples of the three varieties were analyzed at harvest and at different stages of withering, namely10%, 20% and 30% of weight loss. Free and glycosidically bound compounds were extracted and analyzed using Gas Chromatography- Mass Spectrometry (GC-MS).

RESULTS: For all the samples the data were normalized to eliminate the effect of concentration due to grape dehydration. Terpene content and evolution varied considerably in relationship to grape variety. Corvinone was richer in cyclic terpenes (including phellandrene, limonene, and cymene) and they decreased during withering. Conversely, Corvina was richer in linalool, with a peak at 20% of weight loss. Also glycosylated nerol and geraniol were more abundant in Corvinone grapes, peaking at 20% of weight loss. Complex patterns of evolution were also observed for free and glycosylated benzenoids (mostly benzyl alcohol, vanillin, and methyl vanillate), which increased in Corvina and Corvinone while tended to decrease in Rondinella.

CONCLUSIONS:

The present results highlighted a variability between the different classes of aromatic compounds and between the three different varieties due to metabolic changes that do not depend solely on grape dehydration. As such, the results highlight the need for further investigations in the aromatic evolution of the grapes during the grape withering, with the aim of developed improved control strategies for Amarone and Recioto production.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jessica Anahi Samaniego Solis 

University Of Verona – University of Verona, Giacomo CRISTANELLI, University of Verona Giovanni LUZZINI, University of Verona Davide SLAGHENAUFI, University of Verona Maurizio UGLIANO, University of Verona

Contact the author

Keywords

grape withering; terpenes; corvina; corvinone; rondinella

Citation

Related articles…

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Modulating the phyllosphere microbiome in grapevine using plant biostimulants to enhance protection against biotic and abiotic stress

Context and purpose of the study. Climate change scenarios predict ever increasing frequency of drought events and coupled with disease outbreaks poses survival risks to perennial fruit crops such as grapevine.

Non-invasive grapevine inflorescence detection using YOLOv11 under field conditions

Accurate and early yield estimation in vineyards is essential for the effective management of resources and informed decision-making in viticulture.

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.

Crop water stress index as a tool to estimate vine water status

Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.