Gas chromatography-olfactometry characterization of corvina and corvinone young and aged wines

Abstract

AIM AND METHODS: Corvina and Corvinone are the two main grape varieties used in the production of Valpolicella, Recioto and Amarone, top-quality red wines in north-eastern Italy. This work aimed at determining the aroma composition of Corvina and Corvinone experimental wines and identify the main aroma compounds contributing to the aroma characteristics of Corvina and Corvinone monovarietal wines. Five Corvina and five Corvinone wines were studied, the grapes coming from five different vineyards in Valpolicella. Volatile compounds were extracted by SPE and identified and quantified by gas chromatography-mass spectrometry (GC-MS), whereas their aroma impact was determined by gas chromatography- olfactometry (GC-O).

RESULTS: Based on the GC-MS-O analysis, 95 odor zones were detected, from which 68 compounds were successfully identified. Using the criterion of a value higher than 30% in modified frequency (MF %), 51 compounds were selected and grouped according to odor similarity. Compounds with values below 30% were discarded. Modified frequency percentage (MF %) was calculated using the frequency of citation and the intensity of each odor zone (Dravnieks, 1985). Fifteen groups were created with the following odor descriptors: vegetal, fruity, lactic, berry-like, balsamic, chemical, reductive, plastic, toasted-burnt, sweet, floral, rancid, herbaceous, sweet-spices and spicy. Diacetyl, ethyl butyrate, isoamyl acetate, isoamyl alcohol, 1-octen-3-one, methional, 2-/3-methylbutyric acid, methionol, beta-damascenone, 2-methoxyphenol (guaiacol), beta-phenethyl alcohol, 4- propylguaiacol, and eugenol, were found to be the most potent compounds. A number of other potent odor zones were detected but could not be identified, in particular associated with the odor descriptors such as balsamic, sweet-spices and toasted-burnt. Identification of the chemical compounds responsible for these odor zones is currently in progress.

CONCLUSIONS:

This work helps to shed more light on the aroma composition of some of the most representative red wines made in Italy and from which there is little information available to date.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jessica Anahi Samaniego Solis

University of Verona,Giovanni LUZZINI, University of Verona Davide SLAGHENAUFI, University of Verona Giulio COSENTINO , University of Verona Maurizio UGLIANO, University of Verona

Contact the author

Keywords

gas chromatography; olfactometry; corvina; corvinone

Citation

Related articles…

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

Characterization and application of silicon carbide (SiC) membranes to oenology

After fermentations, the crude wine is a turbid medium not accepted by the consumer therefore, it needs to be filtered

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition.