Gas chromatography-olfactometry characterization of corvina and corvinone young and aged wines

Abstract

AIM AND METHODS: Corvina and Corvinone are the two main grape varieties used in the production of Valpolicella, Recioto and Amarone, top-quality red wines in north-eastern Italy. This work aimed at determining the aroma composition of Corvina and Corvinone experimental wines and identify the main aroma compounds contributing to the aroma characteristics of Corvina and Corvinone monovarietal wines. Five Corvina and five Corvinone wines were studied, the grapes coming from five different vineyards in Valpolicella. Volatile compounds were extracted by SPE and identified and quantified by gas chromatography-mass spectrometry (GC-MS), whereas their aroma impact was determined by gas chromatography- olfactometry (GC-O).

RESULTS: Based on the GC-MS-O analysis, 95 odor zones were detected, from which 68 compounds were successfully identified. Using the criterion of a value higher than 30% in modified frequency (MF %), 51 compounds were selected and grouped according to odor similarity. Compounds with values below 30% were discarded. Modified frequency percentage (MF %) was calculated using the frequency of citation and the intensity of each odor zone (Dravnieks, 1985). Fifteen groups were created with the following odor descriptors: vegetal, fruity, lactic, berry-like, balsamic, chemical, reductive, plastic, toasted-burnt, sweet, floral, rancid, herbaceous, sweet-spices and spicy. Diacetyl, ethyl butyrate, isoamyl acetate, isoamyl alcohol, 1-octen-3-one, methional, 2-/3-methylbutyric acid, methionol, beta-damascenone, 2-methoxyphenol (guaiacol), beta-phenethyl alcohol, 4- propylguaiacol, and eugenol, were found to be the most potent compounds. A number of other potent odor zones were detected but could not be identified, in particular associated with the odor descriptors such as balsamic, sweet-spices and toasted-burnt. Identification of the chemical compounds responsible for these odor zones is currently in progress.

CONCLUSIONS:

This work helps to shed more light on the aroma composition of some of the most representative red wines made in Italy and from which there is little information available to date.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jessica Anahi Samaniego Solis

University of Verona,Giovanni LUZZINI, University of Verona Davide SLAGHENAUFI, University of Verona Giulio COSENTINO , University of Verona Maurizio UGLIANO, University of Verona

Contact the author

Keywords

gas chromatography; olfactometry; corvina; corvinone

Citation

Related articles…

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

Copper, iron and zinc in surface layer of Primošten vineyard soils

Long-term use of copper fungicides causes increased accumulation of total copper in the surface layer of vineyard soils. Many of authors has researched the anthropogenic influx of copper in such soils, which can result in environmental risks.

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties.