Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Abstract

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] . Results confirmed the affinity of PVPP towards flavan-3-ols and anthocyanins, especially coumaroylated anthocyanins demonstrated earlier[4]. Chemometrics analysis of the color and composition data revealed a link between redness (a*) and lightness (L*) related to native anthocyanin and flavan-3-ol concentrations. However, no specific marker was associated to patatin fining, suggesting the involvement of other pigments in the yellow component (b*). Additional data was acquired on the same set of samples by untargeted metabolomics using Ultra High Performance Liquid Chromatography coupled to an High Resolution Mass Spectrometer (UHPLC-HR-MS). Our results corroborate those of targeted analysis, demonstrating particular affinity of PVPP for native anthocyanins and flavan-3-ol but also flavonols and stilbenes. Markers of each fining treatment were also identified. PVPP fining treatment revealed a sharp decrease in the rose wine color, especially on the redness (a*) component linked to losses of phenolic compounds such as native anthocyanin. Further investigations aiming at revealing markers of the yellow component (b*) from untargeted analysis data are under way.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cécile Leborgne

SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban,Ashley Carty, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Aurélie Chevalier, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Arnaud Verbaere, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Matthias Bougreau, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Claude Boulet, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Nicolas Sommerer, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier   Gilles Masson, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Roch Mouret, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Véronique Cheynier, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier

Contact the author

Keywords

rosé wine – color – polyphenols – metabolomics – targeted & untargeted analysis

Citation

Related articles…

Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Aims: Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenological events and in the length of the growing season, which may affect grape quality. The aim of this research was to analyze the projected changes in vine phenology and on grape composition of the Tempranillo variety in Rioja DOCa under different climate change scenarios.

Effect of late pruning on yield and wine composition in monastrell wines

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the

Are all red wines equals regarding their vulnerability to Brettanomyces bruxellensis ?

Odours deemed harmful by the consumer and described as “stable”, “horse sweat” or “burnt plastic” can be found in wines. The responsible molecules are volatile phenols, produced by a spoilage yeast: brettanomyces bruxellensis. This species is particularly well adapted to the wine environment and can resists many stresses such as a high alcohol level, a low ph or high levels of SO2, more or less efficiently depending on the strain considered.

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion