Macrowine 2021
IVES 9 IVES Conference Series 9 Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

Abstract

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC. Their content was assayed by developing a UHPLC-Q-Exactive quantification method. The method was applied to screen astilbin and isomers in various wines, especially in different vintages from the same estate. Sensory analysis highlighted the sweet taste of these stereoisomers whose intensity varied according to their configuration. Quantification results revealed that while young wines contained higher concentrations of astilbin than the old ones, the concentrations of the other isomers, mainly neoastilbin, were higher in the old wines, suggesting their formation over time.These results highlight the contribution of astilbin isomers in wine sweetness. More generally, this study brings new insights to understand the chemical origin of wine taste.

DOI:

Publication date: September 17, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Le Scanff , Syntia FAYAD, Axel MARCHAL, 

Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France 

Contact the author

Keywords

sweetness, sensory analysis, taste, isomers, wines

Citation

Related articles…

Phenolic composition and physicochemical analysis of wines made with the Syrah grape under double pruning in the Brazilian high-altitude Cerrado

This study explores the growing potential of vitiviniculture in Brazil’s Federal District, an emerging wine region marked by unique climatic conditions and innovative cultivation techniques.

Identification of natural terroir units for viticulture: Stellenbosch, South Africa

Une unité de terroir naturel (UTN) peut être définie comme une unité de terre qui est caractérisée par une relative homogénéité topographique, climatique, géologique et pédologique. De telles unités sont de grande valeur pour mieux comprendre le système terroir/vigne/vin. Le but de cette étude est de caractériser la région viticole du Bottelaryberg. – Simonsberg-Helderberg en utilisant une information digitale existante et d’identifier des UTN en utilisant un Système d’information Géographique.

Evapotranspiración de viñedo en secano y evaporación de barbecho en “La Mancha”

Un 94 % del viñedo español se cultiva con métodos y técnicas propias de los sistemas agrícolas desarrollados en secano en regiones de clima semiárido, donde las precipitaciones anuales raramente exceden los 500 mm

Methodology and zoning of A.O.C. natural soils. Example of “Pic Saint-Loup”

Les travaux menés, dans le cadre du programme départemental pour la connaissance et la valorisation des terroirs viticoles, sur l’aire A.O.C. Coteaux du Languedoc / Pic Saint-Loup ont permis d’appliquer à l’échelle d’une Appellation d’Origine Contrôlée (13 communes), une méthodologie d’étude axée sur les aspects sol/climat/topographie qui concourent à l’identification des terroirs naturels, facteurs de typicité des vins.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.