Macrowine 2021
IVES 9 IVES Conference Series 9 A new approach for sensory characterization of grape. Relationship with chemical composition

A new approach for sensory characterization of grape. Relationship with chemical composition

Abstract

AIM: Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables.

METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology.

RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated. Three main independent dimensions defining the sensory space of PFs were identified: D1, “dry on the tongue”; D2, “bitter/ sticky”; and D3: “coarse/dry”. Two out of the three dimensions could be satisfactory modeled by PLS-regression from chemical parameters. Tannin activity and tannin concentration along with mDP of tannins proved to be good predictors of perceived dryness. Flavonols have a good prediction power for “bitter” attribute and the “sticky/bitter” dimension. In addition, the low molecular weight anthocyanins seem to be involved in the formation of the “dry” attribute, whereas large polymeric pigments in the “sticky” attribute and the “sticky/bitter” dimension.

CONCLUSIONS:

This study has increased our knowledge about some of the chemical drivers of grape sensory properties and presents a powerful tool for the wine industry to assess grape quality.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria-Pilar Saenz-Navajas , Logroño, Alejandro, Suárez, Chelo, Ferreira, Panagiotis, Arapitsas, Daniele, Perenzoni, Fulvio, Mattivi,  Vicente, Ferreira,

Instituto De Ciencias De La Vid Y Del Vino (Ur-Csic-Gr). Department Of Enology, La Rioja, Spain, Universidad De Zaragoza, Iuma, Spain.   Fondazione Edmund Mach, Italy.  Universidad De Zaragoza, Ia2, Spain.  Purificación, Fernandez-Zurbano, Instituto De Ciencias De La Vid Y Del Vino (Ur-Csic-Gr). La Rioja, Spain.

Contact the author

Keywords

pls, phenolic fraction, grape quality, mouthfeel, taste

Citation

Related articles…

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color.

Implications of the respect of pruning principles on grapevine development

After some decades sunk into oblivion, pruning has recently recovered the focus of grape growers and viticulturists worldwide. Attention is now being paid to the respect the sap flow continuity and to pruning wounds, as they may affect the general performance and longevity of the plant. The longevity and profitability are strongly affected by the increasing incidence of grapevine wood diseases (GWD), intensified by the omission of good pruning practices and leading to an increasingly aggressive pruning. The purpose of this study is to provide an objective evaluation of the short- and mid-term implications of different pruning practices that differ in the degree of observation several of pruning principles.

Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Volatile Organic Compounds (VOCs) are responsible for the flavor and aroma of a wine. The sensory qualities of the wines depend not only on grape intrinsic characteristics, but also on extrinsic factors including the soil composition. Previous studies have shown that the application of pyrogenic carbon (biochar) can lead to a change in soil parameters. For that reason, one of the goals of the ERDF funded project «WoodUp» is the characterization and reutilization of the locally produced biochar for agricultural purposes.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.