Macrowine 2021
IVES 9 IVES Conference Series 9 A new approach for sensory characterization of grape. Relationship with chemical composition

A new approach for sensory characterization of grape. Relationship with chemical composition

Abstract

AIM: Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables.

METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology.

RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated. Three main independent dimensions defining the sensory space of PFs were identified: D1, “dry on the tongue”; D2, “bitter/ sticky”; and D3: “coarse/dry”. Two out of the three dimensions could be satisfactory modeled by PLS-regression from chemical parameters. Tannin activity and tannin concentration along with mDP of tannins proved to be good predictors of perceived dryness. Flavonols have a good prediction power for “bitter” attribute and the “sticky/bitter” dimension. In addition, the low molecular weight anthocyanins seem to be involved in the formation of the “dry” attribute, whereas large polymeric pigments in the “sticky” attribute and the “sticky/bitter” dimension.

CONCLUSIONS:

This study has increased our knowledge about some of the chemical drivers of grape sensory properties and presents a powerful tool for the wine industry to assess grape quality.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria-Pilar Saenz-Navajas , Logroño, Alejandro, Suárez, Chelo, Ferreira, Panagiotis, Arapitsas, Daniele, Perenzoni, Fulvio, Mattivi,  Vicente, Ferreira,

Instituto De Ciencias De La Vid Y Del Vino (Ur-Csic-Gr). Department Of Enology, La Rioja, Spain, Universidad De Zaragoza, Iuma, Spain.   Fondazione Edmund Mach, Italy.  Universidad De Zaragoza, Ia2, Spain.  Purificación, Fernandez-Zurbano, Instituto De Ciencias De La Vid Y Del Vino (Ur-Csic-Gr). La Rioja, Spain.

Contact the author

Keywords

pls, phenolic fraction, grape quality, mouthfeel, taste

Citation

Related articles…

L’Appellation d’Origine Contrôlée « Huile Essentielle de Lavande de Haute Provence »

Depuis des siècles, la lavande est utilisée pour son parfum et pour ses vertus thérapeutiques naturelles.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change.

Validation of a method for the determination of volatile compounds in in spirituous beverages using contained ethanol as a reference substance

The results of experimental studies of the method based on the usage of ethyl alcohol as an internal standard for the direct determination of volatile compounds in wines and others alcohol contained products are presented. The method was validated in terms of precision, accuracy, limits of detection and quantification (lod and loq), linearity, and robustness.

VitiProtect–Development and testing of a downy mildew AI forecasting model for Swiss viticulture

Downy mildew (Plasmopara viticola) is a fungal pathogen that causes a destructive disease in grapevines (Vitis vinifera).