Macrowine 2021
IVES 9 IVES Conference Series 9 The relationship between enzyme treatment and polysaccharide extraction in wine making, and subsequent sensory effects in Cabernet Sauvignon wines

The relationship between enzyme treatment and polysaccharide extraction in wine making, and subsequent sensory effects in Cabernet Sauvignon wines


AIM: To determine the effect of both ripeness and enzyme maceration on the astringency and bitterness perception of Cabernet Sauvignon winesRecent work has contributed to a more detailed understanding of the grape cell wall deconstruction process from ripening through crushing and fermentation, providing a better understanding of what role polysaccharides play in post-harvest fermentation of grapes(1,2). Current research on glycomics in red wine making suggest polysaccharides are important sensory impact molecules (3–6).

METHODS: Our experimental system harvests Cabernet Sauvignon grapes at three different ripeness levels and makes wine both with and without enzyme treatment. Using glycan-array technology (Comprehensive Microarray Polymer Profiling – CoMPP) as an analytical tool, we explore comparative levels of polysaccharides derived from cell walls that pass through the fermentation process to wines. These results are confirmed using GC-MS analysis of hydrolyzed polysaccharides, in addition to analysis of extracted tannins and polyphenols. Wines are submitted for sensory analysis to test astringency and bitterness perception after alcohol level equalization, providing a novel look at emzyme macerations sensory effect, focusing on polysaccharide levels in wine.

RESULTS/DISCUSSION: Data shows ripeness has a more limited effect than expected on polysaccharide profiles in finished wine, but enzyme addition causes a marked decrease in soluble polysaccharides. An increase in polymeric pigments and tannins is noted with enzyme use. Sensory testing of these wines established a relationship between perceived astringency and polysaccharide, but also shows the traditionally accepted relationship between phenol content of red wines and perceived astringency is more complicated.


Enzyme maceration has an effect on perceived astringency in finished wines, but does not affect bitterness. Ripeness has a limited effect on polysaccharide extraction, but no significant differences in wine astringency. In this study, bitterness was not affected by ripeness nor enzyme maceration.


Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article


Brock Kuhlman, Bodil JØRGENSEN,   José L. ALEIXANDRE TUDO , John P. MOORE,

South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa, Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark , Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos and Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology  Wessel DU TOIT, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa ,  Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa

Contact the author


enzyme maceration, astringency, polysaccharide extraction, polyphenolic extraction, bitterness


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.