Macrowine 2021
IVES 9 IVES Conference Series 9 The evaluation of tannin activity in south african red wines

The evaluation of tannin activity in south african red wines

Abstract

Astringency is an important red wine quality attribute, which can be measured both chemically and sensorially. The use of tannin activity shows potential as a valuable chemical measurement in understanding red wine mouthfeel properties such as astringency and bitterness, which is also affected by tannin structural factors, in addition to matrix effects. Tannin activity is defined as the enthalpy of interaction between tannins and a hydrophobic surface. Studies involving tannin activity have been performed since the early 2010’s, but chemosensory studies used to evaluate how structure-activity relationships change across multiple, consecutive vintages are limited. The aim of this study is to investigate how tannin activity may be linked to red wine mouthfeel, and how all these variables may change according to wine age.

The effect of wine vintage on tannin activity was investigated in red wine extracts isolated from 16 Pinotage wines from a well-known producer (2003-2018) using Sephadex LH-20 chromatography. Approximately 17-18 polymeric fractions were obtained per wine, and furtherly grouped into four sub-fractions of various classes: low, medium, high, and bulk, giving 64 unique extract samples. Bulk samples represent a combination of the three other obtained fractions. Pooled extracts were grouped to obtain samples of variable but increasing molecular mass, which may each reflect differences in total phenolic and tannin content, and degree of polymerization, parameters previously shown to affect tannin activity. Retention thermodynamics were used to calculate activity values by utilising reverse-phase liquid chromatography (RPLC) on a polystyrene divinylbenzene column. Other complementary tannin-based techniques – to investigate structure-activity-concentration relationships – were also performed by obtaining chemical information based on subunit size and composition (by phloroglucinolysis), and total tannin content (by MCP and RPLC). Sensory analysis was performed by an expert panel to evaluate sweetness, acidity, body, complexity, astringency and bitterness. Younger wines’ polymeric profiles may be characterized by lower tannin activities and content, smaller degrees of polymerization and therefore an increased perception of bitterness, with higher activities and tannin concentrations in aged wine due to polymerization reactions – this may also explain why aged wines are perceived as more astringent than younger wines (Barak & Kennedy, 2013; Watrelot et al., 2016; Yacco et al., 2016). Furthermore, tannin activity values may plateau and show a decrease in older wines as tannin structural changes may lead to decreased tannin-protein interactions. Wine vintage may show a similar effect across all weight classes except in bulk wine fractions. These measurements could serve to establish how chemical measurements are linked to the sensory outcomes of this study and ultimately how mouthfeel perception is modulated according to wine vintage.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Brannigan Du Preez , Jose Luis Aleixandre-Tudo

Stellenbosch University: South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Polytechnic University of Valencia, Research Institute of Food Engineering for Development; Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology

Contact the author

Keywords

tannin activity; vintage; astringency; pinotage

Citation

Related articles…

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

Enhancing vine resilience and protecting grape production in Mediterranean vineyards: the role of anti-hail shading nets and kaolin applications

Climate change and rising temperatures present a substantial challenge to viticulture, intensifying summer heat stress and accelerating berry ripening.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Yeast derivatives: an innovative approach to produce Oenococcus oeni under biofilm form?

The malolactic fermentation can occur naturally or be induced by inoculation of selected bacterial strains, most commonly of Oenococcus oeni.