Macrowine 2021
IVES 9 IVES Conference Series 9 The evaluation of tannin activity in south african red wines

The evaluation of tannin activity in south african red wines

Abstract

Astringency is an important red wine quality attribute, which can be measured both chemically and sensorially. The use of tannin activity shows potential as a valuable chemical measurement in understanding red wine mouthfeel properties such as astringency and bitterness, which is also affected by tannin structural factors, in addition to matrix effects. Tannin activity is defined as the enthalpy of interaction between tannins and a hydrophobic surface. Studies involving tannin activity have been performed since the early 2010’s, but chemosensory studies used to evaluate how structure-activity relationships change across multiple, consecutive vintages are limited. The aim of this study is to investigate how tannin activity may be linked to red wine mouthfeel, and how all these variables may change according to wine age.

The effect of wine vintage on tannin activity was investigated in red wine extracts isolated from 16 Pinotage wines from a well-known producer (2003-2018) using Sephadex LH-20 chromatography. Approximately 17-18 polymeric fractions were obtained per wine, and furtherly grouped into four sub-fractions of various classes: low, medium, high, and bulk, giving 64 unique extract samples. Bulk samples represent a combination of the three other obtained fractions. Pooled extracts were grouped to obtain samples of variable but increasing molecular mass, which may each reflect differences in total phenolic and tannin content, and degree of polymerization, parameters previously shown to affect tannin activity. Retention thermodynamics were used to calculate activity values by utilising reverse-phase liquid chromatography (RPLC) on a polystyrene divinylbenzene column. Other complementary tannin-based techniques – to investigate structure-activity-concentration relationships – were also performed by obtaining chemical information based on subunit size and composition (by phloroglucinolysis), and total tannin content (by MCP and RPLC). Sensory analysis was performed by an expert panel to evaluate sweetness, acidity, body, complexity, astringency and bitterness. Younger wines’ polymeric profiles may be characterized by lower tannin activities and content, smaller degrees of polymerization and therefore an increased perception of bitterness, with higher activities and tannin concentrations in aged wine due to polymerization reactions – this may also explain why aged wines are perceived as more astringent than younger wines (Barak & Kennedy, 2013; Watrelot et al., 2016; Yacco et al., 2016). Furthermore, tannin activity values may plateau and show a decrease in older wines as tannin structural changes may lead to decreased tannin-protein interactions. Wine vintage may show a similar effect across all weight classes except in bulk wine fractions. These measurements could serve to establish how chemical measurements are linked to the sensory outcomes of this study and ultimately how mouthfeel perception is modulated according to wine vintage.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Brannigan Du Preez , Jose Luis Aleixandre-Tudo

Stellenbosch University: South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Polytechnic University of Valencia, Research Institute of Food Engineering for Development; Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology

Contact the author

Keywords

tannin activity; vintage; astringency; pinotage

Citation

Related articles…

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030.

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

Influence of the year and the environmental factors on condensed tannins from Cabernet franc grapes

The composition in condensed tannins of the grape berries is essential for the quality of the harvest. Proanthocyanidins have a significant influence on the organoleptic properties of the red wines

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Observatoire Grenache en Vallée du Rhône: incidence du terroir sur certains précurseurs d’arômes et substances volatiles

As observed in other grape varieties, Red Grenache juice contains low level of volatiles. The main flavor compounds are ” Iock up “as flavorless glycoconjugates which could generate at the wine pH volatile flavorants and constitute the varietal aroma of this cultivar.