Macrowine 2021
IVES 9 IVES Conference Series 9 The evaluation of tannin activity in south african red wines

The evaluation of tannin activity in south african red wines

Abstract

Astringency is an important red wine quality attribute, which can be measured both chemically and sensorially. The use of tannin activity shows potential as a valuable chemical measurement in understanding red wine mouthfeel properties such as astringency and bitterness, which is also affected by tannin structural factors, in addition to matrix effects. Tannin activity is defined as the enthalpy of interaction between tannins and a hydrophobic surface. Studies involving tannin activity have been performed since the early 2010’s, but chemosensory studies used to evaluate how structure-activity relationships change across multiple, consecutive vintages are limited. The aim of this study is to investigate how tannin activity may be linked to red wine mouthfeel, and how all these variables may change according to wine age.

The effect of wine vintage on tannin activity was investigated in red wine extracts isolated from 16 Pinotage wines from a well-known producer (2003-2018) using Sephadex LH-20 chromatography. Approximately 17-18 polymeric fractions were obtained per wine, and furtherly grouped into four sub-fractions of various classes: low, medium, high, and bulk, giving 64 unique extract samples. Bulk samples represent a combination of the three other obtained fractions. Pooled extracts were grouped to obtain samples of variable but increasing molecular mass, which may each reflect differences in total phenolic and tannin content, and degree of polymerization, parameters previously shown to affect tannin activity. Retention thermodynamics were used to calculate activity values by utilising reverse-phase liquid chromatography (RPLC) on a polystyrene divinylbenzene column. Other complementary tannin-based techniques – to investigate structure-activity-concentration relationships – were also performed by obtaining chemical information based on subunit size and composition (by phloroglucinolysis), and total tannin content (by MCP and RPLC). Sensory analysis was performed by an expert panel to evaluate sweetness, acidity, body, complexity, astringency and bitterness. Younger wines’ polymeric profiles may be characterized by lower tannin activities and content, smaller degrees of polymerization and therefore an increased perception of bitterness, with higher activities and tannin concentrations in aged wine due to polymerization reactions – this may also explain why aged wines are perceived as more astringent than younger wines (Barak & Kennedy, 2013; Watrelot et al., 2016; Yacco et al., 2016). Furthermore, tannin activity values may plateau and show a decrease in older wines as tannin structural changes may lead to decreased tannin-protein interactions. Wine vintage may show a similar effect across all weight classes except in bulk wine fractions. These measurements could serve to establish how chemical measurements are linked to the sensory outcomes of this study and ultimately how mouthfeel perception is modulated according to wine vintage.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Brannigan Du Preez , Jose Luis Aleixandre-Tudo

Stellenbosch University: South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Polytechnic University of Valencia, Research Institute of Food Engineering for Development; Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology

Contact the author

Keywords

tannin activity; vintage; astringency; pinotage

Citation

Related articles…

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.

Plant biostimulants in combination treatments as environmentally-friendly rest-breaking agents for dormancy release in table grapes Vitis vinifera Crimson Seedless

Context and purpose of the study. Vitis vinifera grapevine is a perennial crop which is globally cultivated, surviving cold winters in temperate zones by entering a state of dormancy.

Rare earth elements distribution in grape berries

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements.