Macrowine 2021
IVES 9 IVES Conference Series 9 Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Abstract

AIM: Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.

METHODS: Different enzymes presenting distinct single activities (pectolytic and non pectolytic) were added to the must of four white winegrape varieties (Arneis, Greco, Falanghina and Chardonnay) and then subjected to cold pre-fermentative maceration. For each enzyme and variety tested, three berry replicates of 500 g each were randomly selected, added with 10 mg/kg of potassium metabisulphite and crushed. Enzymes were added at a dose of 10 mg/kg. Then, the must was left in contact with the skins for 13 h at 12 °C. Furthermore, other three berry replicates of 500 g each were used as control following the same procedure without enzyme addition. At the end, the musts obtained were separated from the skins and analysed for total polyphenolic index (TPI), chromatic parameters (absorbance at 420 nm and CIELab coordinates), as well as free and glycosylated VOCs. Volatile composition was determined by solid-phase extraction followed by GC-MS analysis [3].

RESULTS: The use of enzymes during cold pre-fermentative maceration resulted in musts having different technological parameters, such as must yield, pH and organic acids content. The chromatic characteristics related to yellow/brown colour (absorbance at 420 nm and CIELab coordinates) and TPI values were dependent on the enzyme used. Indeed, pectin lyase, polygalacturonase and arabinase reduced the yellow colour component of the must obtained when compared to the control sample. Regarding VOCs, different enzymes modulated the release of free forms differently, which are olfactively perceptible, but also they increased the extraction of glycosylated compounds into the grape must. Particularly, most of enzymes tested had a positive effect on the release of terpenes, however the release of norisoprenoids, C6 compounds, alcohols and benzenoids was influenced by both the enzyme used and the variety treated

CONCLUSIONS: The use of different enzymes influenced technological parameters, chromatic characteristics and VOCs contents but some effects were variety dependent. This study may aid oenologists to better understand the action of these enzymes and thus to manage cold pre-fermentative maceration according to the oenological objective.

DOI:

Publication date: September 27, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mattia Malabaila, Stefano BOZ, Maria Alessandra PAISSONI, Carlo MONTANINI, Simone GIACOSA, Luca ROLLE, Susana RÍO SEGADE,

University of Torino, Italy.

Contact the author

Keywords

enzymes, pre-fermentative maceration, volatile organic compounds, chromatic characteristics, white winegrapes

Citation

Related articles…

Description of the relationship between trunk disease expression and meteorological conditions, irrigations and physiological response in Chardonnay grapevines

In this audio recording of the IVES science meeting 2022, Florence Fontaine (Université de Reims Champagne Ardenne) speaks about grapevine trunk disease. This presentation is based on an original article accessible for free on OENO One.

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

Genetic and hormonal regulation of grape berry cuticle formation

The plant surface typically comprises of various epidermal cell types which synthesise and deposit a protective waxy layer known as the cuticle. The cuticle is a significant contributor to important crop traits related to drought tolerance, biotic stress, postharvest fruit quality as well as providing structural support. In this work we have investigated grape berry cuticle formation in the context of the accumulation of anti-fungal specialised metabolites and the ability of the cuticle to structurally cope with the rapid expansion of ripening berries. Metabolic QTL analysis was performed in a grapevine cross population, using chemical profiling data collected via GC-MS analysis for cuticular waxes.

Wine lees: characterization and valorization by kombucha fermentation

Winemaking generates various types of residues (vine shoots, stalks, pomace, wine lees and filtration cakes) which can have a notable environmental and economic impact. Wine by-products are rich in bioactive compounds and therefore their valorization can be beneficial on different levels.

Spatio-temporal analysis of grapevine water behaviour in hillslope vineyards. the example of corton hill, Burgundy

Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France.