Macrowine 2021
IVES 9 IVES Conference Series 9 Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Abstract

AIM: Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.

METHODS: Different enzymes presenting distinct single activities (pectolytic and non pectolytic) were added to the must of four white winegrape varieties (Arneis, Greco, Falanghina and Chardonnay) and then subjected to cold pre-fermentative maceration. For each enzyme and variety tested, three berry replicates of 500 g each were randomly selected, added with 10 mg/kg of potassium metabisulphite and crushed. Enzymes were added at a dose of 10 mg/kg. Then, the must was left in contact with the skins for 13 h at 12 °C. Furthermore, other three berry replicates of 500 g each were used as control following the same procedure without enzyme addition. At the end, the musts obtained were separated from the skins and analysed for total polyphenolic index (TPI), chromatic parameters (absorbance at 420 nm and CIELab coordinates), as well as free and glycosylated VOCs. Volatile composition was determined by solid-phase extraction followed by GC-MS analysis [3].

RESULTS: The use of enzymes during cold pre-fermentative maceration resulted in musts having different technological parameters, such as must yield, pH and organic acids content. The chromatic characteristics related to yellow/brown colour (absorbance at 420 nm and CIELab coordinates) and TPI values were dependent on the enzyme used. Indeed, pectin lyase, polygalacturonase and arabinase reduced the yellow colour component of the must obtained when compared to the control sample. Regarding VOCs, different enzymes modulated the release of free forms differently, which are olfactively perceptible, but also they increased the extraction of glycosylated compounds into the grape must. Particularly, most of enzymes tested had a positive effect on the release of terpenes, however the release of norisoprenoids, C6 compounds, alcohols and benzenoids was influenced by both the enzyme used and the variety treated

CONCLUSIONS: The use of different enzymes influenced technological parameters, chromatic characteristics and VOCs contents but some effects were variety dependent. This study may aid oenologists to better understand the action of these enzymes and thus to manage cold pre-fermentative maceration according to the oenological objective.

DOI:

Publication date: September 27, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mattia Malabaila, Stefano BOZ, Maria Alessandra PAISSONI, Carlo MONTANINI, Simone GIACOSA, Luca ROLLE, Susana RÍO SEGADE,

University of Torino, Italy.

Contact the author

Keywords

enzymes, pre-fermentative maceration, volatile organic compounds, chromatic characteristics, white winegrapes

Citation

Related articles…

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Social and environmental impacts of the adoption of a variety of table grape in the region of vale do São Francisco – Brazil

This study explores and analyzes the socio-environmental implications associated with the cultivation of the “brs-vitoria” table grape variety. Focusing on its adoption by farmers in the vale do submédio São Francisco region in Brazil, this study delves into the diverse impacts and changes brought about since its introduction, encompassing both the social and environmental dimensions of agricultural practices in the area. Embrapa, brazil’s federal agricultural research institution, encompasses a network of 43 thematic research centers spread across the nation.

Modulating the phyllosphere microbiome in grapevine using plant biostimulants to enhance protection against biotic and abiotic stress

Context and purpose of the study. Climate change scenarios predict ever increasing frequency of drought events and coupled with disease outbreaks poses survival risks to perennial fruit crops such as grapevine.

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.