terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area


The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices). The trial was carried out in an experimental vineyard of the Tempranillo variety, located in a semi-arid area (Badajoz, Spain). CW and FW were elaborated according to the traditional methods for red wine. Then, 25FW, 50FW and 75FW wines were prepared by blending 25,50 and 75% FW and CW respectively and analyzed after the stabilization stage. Total Polyphenolic content, anthocyanins, catechins, the contribution to color due to copigmented anthocyanins and chromatic parameters were analyzed by spectrophotometric methods. The results obtained were subjected to ANOVA and PCA analyses. The sequence FW > 75FW> 50FW> 25FW> CW was observed for all the parameters evaluated and significant differences were found for most of them in 50FW, 75FW and FW with respect to CW. The PCA showed a good separation between CW and 25FW and the rest of the blending wines. Blending improved the phenolic and chromatic characteristics of CW by using the appropriate proportions of CW and FW. In addition, this could be a way to rent out the economic damage caused by the forcing application.

Acknowledgements: This research was supported by funds from Project IB20082, the ERDF and Junta de Extremadura, AGA001 (GR21196).


Publication date: October 24, 2023

Issue: ICGWS 2023

Type: Poster


M. Esperanza Valdés-Sánchez1, Daniel Moreno-Cardona1, Nieves Lavado-Rodas1, David Uriarte-Hernandez2, Luis Mancha-Ramírez2, Antonia M. Vacas Ramos2 y M. Henar Prieto- Losada2

1 CICYTEX (Junta de Extremadura), Instituto Tecnológico Agroalimentario de Extremadura, Avda Adolfo Suárez s/n, Badajoz, Spain

2 CICYTEX (Junta de Extremadura), Finca La Orden, Guadajira, Badajoz, Spain

Contact the author*


anthocyanins, catechins, copigmentation, hue, color intensity


2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series


Related articles…

Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Addressing modifiable risk factors is the most promising strategy to prevent/delay Alzheimer Disease (AD)[1]. The aim of the study was to establish the connections between dietetic habits, wine consumption and AD. Thus, 98 volunteers were recruited: 50 diagnosed as AD and 48 healthy/controls. The Food Frequency Questionnaire (FFQ) was used for dietary patterns assessment and, based on these data, the Mind Diet Score was calculated. (Poly)phenol metabolites (especially derived from wine consumption) were analyzed by UPLC-QqQ-MS/MS in 24-h urine samples to confirm dietary (poly)phenol consumption.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.