Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Abstract

AIM: Explore the variability and contribution of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas of semi-synthetic Tempranillo wines, together with an in-depth study of the capacity of these strains to provide good fermentative and oenological qualities.

METHODS: 6 Saccharomyces yeasts strains of different species and origins performed fermentations in semi-synthetic must containing polyphenolic and aroma precursor Tempranillo extract. The resulting wines were subjected to accelerated anoxic aging simulating bottle aging. The aroma compounds released during fermentation and those contained in young and aged wines and must were liquid-liquid extracted and analysed by Gas Chromatography-Olfactometry (GC-O), GC-FID (flame ionization detector) and GC-Mass Spectrometry.

RESULTS: Among the compounds volatilised during fermentation, one of varietal origin was tentatively detected, 4-methyl-4-mercaptopenta-2-one (4MMP). The natural yeasts likely to introduce positive aroma notes to young and aged Tempranillo wines were E1 (S. eubayanus), C3, C2 (S. cerevisiae), K3 (S. kudriavzevii) and U1 (S. uvarum) by the highest production of ethyl esters, lactones, β-ionone and terpenes related to floral and fruity aroma. After aging, β-damascenone, riesling acetal, vitispirane A/B, linanool oxide and massoia lactone were found, nerol was no longer detected and β-linalool was not affected. In addition, there was a modulating effect by the yeasts, increasing or decreasing certain compounds favoured by aging. Regarding this effect, C2 strain excelled due to the large increase in ethyl leucate compared to its young wine and the rest of the aged wines.

CONCLUSIONS: Most compounds were highly increased by aging while yeasts at species and strain level were able to modulate the varietal and fermentative aroma profile differentially in both young and aged semi-synthetic Tempranillo wines.

DOI:

Publication date: September 27, 2021

Issue: Macrowine 2021

Type: Article

Authors

Dolores Pèrez, Marie DENAT, José María HERAS, José Manuel GUILLAMÓN, Vicente FERREIRA, Amparo QUEROL

Lallemand Bio S.L., Barcelona, Spain Centro de Estudios de Enología, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA) 5507, Mendoza, Argentina
Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Spain
Lallemand Bio S.L., Barcelona, Spain
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Zaragoza, Spain
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain

Contact the author

Keywords

non-wine saccharomyces yeasts; fruity ethyl esters, acetates esters, varietal aroma, tempranillo, bottle-aging

Citation

Related articles…

Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins, and identification of grape varieties are both important for effective quality control of harvesting and initial processing for wine making. Current reference technologies including High Performance Liquid Chromatography (HPLC) can be rate limiting and too complex and expensive for effective field operations

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions.

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.