Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Abstract

AIM: Explore the variability and contribution of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas of semi-synthetic Tempranillo wines, together with an in-depth study of the capacity of these strains to provide good fermentative and oenological qualities.

METHODS: 6 Saccharomyces yeasts strains of different species and origins performed fermentations in semi-synthetic must containing polyphenolic and aroma precursor Tempranillo extract. The resulting wines were subjected to accelerated anoxic aging simulating bottle aging. The aroma compounds released during fermentation and those contained in young and aged wines and must were liquid-liquid extracted and analysed by Gas Chromatography-Olfactometry (GC-O), GC-FID (flame ionization detector) and GC-Mass Spectrometry.

RESULTS: Among the compounds volatilised during fermentation, one of varietal origin was tentatively detected, 4-methyl-4-mercaptopenta-2-one (4MMP). The natural yeasts likely to introduce positive aroma notes to young and aged Tempranillo wines were E1 (S. eubayanus), C3, C2 (S. cerevisiae), K3 (S. kudriavzevii) and U1 (S. uvarum) by the highest production of ethyl esters, lactones, β-ionone and terpenes related to floral and fruity aroma. After aging, β-damascenone, riesling acetal, vitispirane A/B, linanool oxide and massoia lactone were found, nerol was no longer detected and β-linalool was not affected. In addition, there was a modulating effect by the yeasts, increasing or decreasing certain compounds favoured by aging. Regarding this effect, C2 strain excelled due to the large increase in ethyl leucate compared to its young wine and the rest of the aged wines.

CONCLUSIONS: Most compounds were highly increased by aging while yeasts at species and strain level were able to modulate the varietal and fermentative aroma profile differentially in both young and aged semi-synthetic Tempranillo wines.

DOI:

Publication date: September 27, 2021

Issue: Macrowine 2021

Type: Article

Authors

Dolores Pèrez, Marie DENAT, José María HERAS, José Manuel GUILLAMÓN, Vicente FERREIRA, Amparo QUEROL

Lallemand Bio S.L., Barcelona, Spain Centro de Estudios de Enología, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA) 5507, Mendoza, Argentina
Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Spain
Lallemand Bio S.L., Barcelona, Spain
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Zaragoza, Spain
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain

Contact the author

Keywords

non-wine saccharomyces yeasts; fruity ethyl esters, acetates esters, varietal aroma, tempranillo, bottle-aging

Citation

Related articles…

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

“Terroir” and climate change in Franconia / Germany

Franconia which is a “cool climate” winegrowing region is well known for its fruity white wines. The most common grape cultivars are Silvaner and Mueller-Thurgau.

Grapevine yield estimation in a context of climate change: the GraY model

Grapevine yield is a key indicator to assess the impacts of climate change and the relevance of adaptation strategies in a vineyard landscape. At this scale, a yield model should use a number of parameters and input data in relation to the information available and be able to reproduce vineyard management decisions (e.g. soil and canopy management, irrigation). In this study, we used data from six experimental sites in Southern France (cv. Syrah) to calibrate a model of grapevine yield limited by water constraint (GraY). Each yield component (bud fertility, number of berries per bunch, berry weight) was calculated as a function of the soil water availability simulated by the WaLIS water balance model at critical phenological phases. The model was then evaluated in 10 grapegrowers’ plots, covering a diversity of biophysical and technical contexts (soil type, canopy size, irrigation, cover crop). We identified three critical periods for yield formation: after flowering on the previous year for the number of bunches and berries, around pre-veraison and post-veraison of the same year for mean berry weight. Yields were simulated with a model efficiency (EF) of 0.62 (NRMSE = 0.28). Bud fertility and number of berries per bunch were more accurately simulated (EF = 0.90 and 0.77, NRMSE = 0.06 and 0.10, respectively) than berry weight (EF = -0.31, NRMSE = 0.17). Model efficiency on the on-farm plots reached 0.71 (NRMSE = 0.37) simulating yields from 1 to 8 kg/plant. The GraY model is an original model estimating grapevine yield evolution on the basis of water availability under future climatic conditions.  It allows to evaluate the effects of various adaptation levers such as planting density, cover crop management, fruit/leaf ratio, shading and irrigation, in various production contexts.