Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Abstract

AIM: Explore the variability and contribution of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas of semi-synthetic Tempranillo wines, together with an in-depth study of the capacity of these strains to provide good fermentative and oenological qualities.

METHODS: 6 Saccharomyces yeasts strains of different species and origins performed fermentations in semi-synthetic must containing polyphenolic and aroma precursor Tempranillo extract. The resulting wines were subjected to accelerated anoxic aging simulating bottle aging. The aroma compounds released during fermentation and those contained in young and aged wines and must were liquid-liquid extracted and analysed by Gas Chromatography-Olfactometry (GC-O), GC-FID (flame ionization detector) and GC-Mass Spectrometry.

RESULTS: Among the compounds volatilised during fermentation, one of varietal origin was tentatively detected, 4-methyl-4-mercaptopenta-2-one (4MMP). The natural yeasts likely to introduce positive aroma notes to young and aged Tempranillo wines were E1 (S. eubayanus), C3, C2 (S. cerevisiae), K3 (S. kudriavzevii) and U1 (S. uvarum) by the highest production of ethyl esters, lactones, β-ionone and terpenes related to floral and fruity aroma. After aging, β-damascenone, riesling acetal, vitispirane A/B, linanool oxide and massoia lactone were found, nerol was no longer detected and β-linalool was not affected. In addition, there was a modulating effect by the yeasts, increasing or decreasing certain compounds favoured by aging. Regarding this effect, C2 strain excelled due to the large increase in ethyl leucate compared to its young wine and the rest of the aged wines.

CONCLUSIONS: Most compounds were highly increased by aging while yeasts at species and strain level were able to modulate the varietal and fermentative aroma profile differentially in both young and aged semi-synthetic Tempranillo wines.

DOI:

Publication date: September 27, 2021

Issue: Macrowine 2021

Type: Article

Authors

Dolores Pèrez, Marie DENAT, José María HERAS, José Manuel GUILLAMÓN, Vicente FERREIRA, Amparo QUEROL

Lallemand Bio S.L., Barcelona, Spain Centro de Estudios de Enología, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA) 5507, Mendoza, Argentina
Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Spain
Lallemand Bio S.L., Barcelona, Spain
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Zaragoza, Spain
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain

Contact the author

Keywords

non-wine saccharomyces yeasts; fruity ethyl esters, acetates esters, varietal aroma, tempranillo, bottle-aging

Citation

Related articles…

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Phototropic and geotropic shoot orientation: effect on physiological, vegetative and reproductive parameters

[English version below]

On a étudié l’effet de l’orientation des rameaux sur les paramètres physiologiques, végétatifs et reproductif durant deux saisons de croissance (2002/2003 et 2003/2004) dans la région de Stellenbosch dans une vignoble du cépage Merlot sur 99R conduite en espalier et taillé à cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m.

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.