Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

Abstract

This study was conducted on soil-climate-plant relations (terroir) and their impact on grape composition and wine quality in the canton of Vaud by Agroscope Changins-Wädenswil ACW. An assessment of the vine nitrogen status on different terroirs was made by means of chlorophyll index, leaf nitrogen content and yeast assimilable nitrogen. Vine nitrogen status was observed to be highly related to soil type. Vines on the soil type “bottom moraines” showed lower vigour, smaller berries and a lower nitrogen status. Sensory analysis discriminated wines from different soil types. Vine nitrogen status through yeast assimilable nitrogen turned out to be strongly correlated with wine positive sensory descriptors and negatively correlated to wine astringency. In our study, the main environmental factors influencing vine development and wine quality was the soil type via its effect on vine nitrogen level. Our results confirm the role on nitrogen supply in grape and wine quality and underline nitrogen as a key factor in understanding the terroir effect.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J-S Reynard, V. Zufferey, F. Murisier

Agroscope Changins-Wädenswil ACW, CH-1260 NYON, Switzerland

Contact the author

Keywords

Soil component of terroir, vine nitrogen status, ecophysiology, grape and wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Microbiome, disease-resistant varieties, and wine quality

The development of interspecific hybrid varieties (ihvs) resistant to diseases such as powdery mildew and downy mildew allows for a decrease in the use of inputs in vineyards. In this pers-pective, ihvs represent a response to societal demand for reducing environmental impact and are increasingly used in viticulture. At the same time, wines resulting from so-called sponta-neous fermentations, based on indigenous flora, have recently gained popularity.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine

X-ray tomography: a promising tool to assess the selection of good quality grafted vines

The production of grated vines is a complex process from grafting to final sorting in nurseries. To reach the market, grafted grapevines must meet three criteria by law in France: resistance to a manual graft union test (named thumb test), a minimum number of three roots and a woody shoot of at least 2 cm long.