Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

Abstract

This study was conducted on soil-climate-plant relations (terroir) and their impact on grape composition and wine quality in the canton of Vaud by Agroscope Changins-Wädenswil ACW. An assessment of the vine nitrogen status on different terroirs was made by means of chlorophyll index, leaf nitrogen content and yeast assimilable nitrogen. Vine nitrogen status was observed to be highly related to soil type. Vines on the soil type “bottom moraines” showed lower vigour, smaller berries and a lower nitrogen status. Sensory analysis discriminated wines from different soil types. Vine nitrogen status through yeast assimilable nitrogen turned out to be strongly correlated with wine positive sensory descriptors and negatively correlated to wine astringency. In our study, the main environmental factors influencing vine development and wine quality was the soil type via its effect on vine nitrogen level. Our results confirm the role on nitrogen supply in grape and wine quality and underline nitrogen as a key factor in understanding the terroir effect.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J-S Reynard, V. Zufferey, F. Murisier

Agroscope Changins-Wädenswil ACW, CH-1260 NYON, Switzerland

Contact the author

Keywords

Soil component of terroir, vine nitrogen status, ecophysiology, grape and wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India,

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6.

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

The Gibberellic-Acid Insensitive gene Vvgai1 impacts both vegetative growth and organogenesis rate in Vitis labruscana

Context and purpose of the study. As other perennial crops grapevine is facing the challenges of climate changes. One of the major issues is global warming and variations of the water budget.