terclim by ICS banner
IVES 9 IVES Conference Series 9 Activation of retrotransposition in grapevine

Activation of retrotransposition in grapevine

Abstract

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci. Combining insights into insertional patterns with both short and long read transcriptome data has highlighted that only a small number of families and within these families and an even smaller number of discrete loci are responsible for ongoing retrotransposition. We are currently exploring means to alter the epigenomic landscape of grape genomes to allow heightened retrotransposon activity and thus mobilization. We will present how we are tracking this mobility using virus-like protein particle analysis (VLP-seq) to both identify families actively transposing and to study the genomic and epigenomic impact of this mobility prior to purifying selection.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Christopher Winefield1*, Suguru Sugiyama1,2, Haniyeh Shahab1,2, Annabel Whibley2, Darrell Lizamore2

1 Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln university, New Zealand
2 Bragato Research Institute, Lincoln University, New Zealand

Contact the author*

Keywords

Grapevine, Transposon, Genomics, Epigenomics, Climate Adaptation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Il piano regolatore delle citta’ del vino: una metodologia di lavoro

Sono quattro i terni fondamentali di questo progetto: la sostenibilità; la conoscenza; la parte­cipazione come strumento anche di riduzione della burocrazia e il tema della coerenza delle politiche di settore e della collaborazione fra gli Enti.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters.

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.