Effects of mesoclimate on the yield, quality and phenolic maturity of Grenache

Abstract

The potential climate change, due to global change, will increase temperature general and could increase at local level. These changes are not going to be the same in different parts of the world, being especially important in the Mediterranean Basin. Thus, according to the most pessimistic predictions temperature can rise until 4ºC and precipitation can be reduced close to 20% but this would be different according local conditions, being also changes in the distribution. In order to study the differences promoted by these climate differences we compared the phenology, yield and quality parameters of Grenache, grafted onto 110-R in two mesoclimatic areas in Catalonia (Spain), Batea (TA: Terra Alta Appellation) and Caldes de Montbui (CAT: Catalunya Appellation) during two consecutive years 2007 and 2008.
In TA rainfall and potential evapotranspiration (ET0) were higher than in CAT, but accumulated growing degree days (∑GDD) were lower, due to lower maximum temperatures and higher minimum temperatures in winter in CAT. The year 2007 was drier and warmer in both locations. Yield was significantly lower only in CAT2007, being no differences in leaf area, nor pruning weight. Veraison and harvest were advanced in 2007 in both locations. Phenological stages were longer in CAT both years. The length of the period between flowering to veraison, and from veraison to harvest is longer when accumulated rainfall during each period is higher. On the other hand, the higher the average of GDD during the period, the shorter the period was. Probable alcohol degree (PAD), Total Phenol Index (TPI), Color Index (CI), Anthocyanin Content (ANTT and ANTE), were higher and Flavan-3-ols content (DMACH) and Seed Maturity (SM) were lower in 2008, in both locations than in 2007, which could indicate that these parameters are very affected by drought, that in 2007 was one of the most dry ripening periods of last century in Catalonia.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Nadal (1), F. de Herralde (2), M. Edo (1), M. Lampreave (1), R.Savé (1)

(1) Grup de Recerca Viti-vinicultura, Facultat d’Enologia, Dept. Bioquímica i Biotecnologia, URV Marcel·lí Domingo s/n. Campus Sant Pere Sescelades, 43007 Tarragona, Spain
(2) IRTA Torre Marimon, Ecofisiologia, Torre Marimon. 08140 Caldes de Montbui, Spain

Contact the author

Keywords

Climate, Vitis, grapevine, drought, phenols

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Non-saccharomyces yeasts in the biocontrol of grape molds in vineyards to reduce the use of pesticides

The wide diffusion of organic cultivation of vineyards and the need to reduce the use of pesticides highlights the urgent need for alternative and sustainable methods of vine protection by pathogen molds.

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

The assessment of wine authenticity is of great importance for consumers, producers and regulatory agencies to guarantee the geographical origin of wines and grape variety as well. Since mid-infrared (MIR) spectroscopy with chemometrics represent a suitable tool to ascertain the wine composition, including features associated with the polyphenolic compounds, the aim of this study was to generate MIR spectra of red wines to be exploited for classification of red wines based on the relationship between grape variety and wine composition. Several multivariate data analyses were used, including Principal Component Analysis (PCA), Discriminant Analysis (DA), Support Vector Machine (SVM), and Soft Intelligent Modelling of Class Analogy (SIMCA).

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.