Effects of mesoclimate on the yield, quality and phenolic maturity of Grenache

Abstract

The potential climate change, due to global change, will increase temperature general and could increase at local level. These changes are not going to be the same in different parts of the world, being especially important in the Mediterranean Basin. Thus, according to the most pessimistic predictions temperature can rise until 4ºC and precipitation can be reduced close to 20% but this would be different according local conditions, being also changes in the distribution. In order to study the differences promoted by these climate differences we compared the phenology, yield and quality parameters of Grenache, grafted onto 110-R in two mesoclimatic areas in Catalonia (Spain), Batea (TA: Terra Alta Appellation) and Caldes de Montbui (CAT: Catalunya Appellation) during two consecutive years 2007 and 2008.
In TA rainfall and potential evapotranspiration (ET0) were higher than in CAT, but accumulated growing degree days (∑GDD) were lower, due to lower maximum temperatures and higher minimum temperatures in winter in CAT. The year 2007 was drier and warmer in both locations. Yield was significantly lower only in CAT2007, being no differences in leaf area, nor pruning weight. Veraison and harvest were advanced in 2007 in both locations. Phenological stages were longer in CAT both years. The length of the period between flowering to veraison, and from veraison to harvest is longer when accumulated rainfall during each period is higher. On the other hand, the higher the average of GDD during the period, the shorter the period was. Probable alcohol degree (PAD), Total Phenol Index (TPI), Color Index (CI), Anthocyanin Content (ANTT and ANTE), were higher and Flavan-3-ols content (DMACH) and Seed Maturity (SM) were lower in 2008, in both locations than in 2007, which could indicate that these parameters are very affected by drought, that in 2007 was one of the most dry ripening periods of last century in Catalonia.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Nadal (1), F. de Herralde (2), M. Edo (1), M. Lampreave (1), R.Savé (1)

(1) Grup de Recerca Viti-vinicultura, Facultat d’Enologia, Dept. Bioquímica i Biotecnologia, URV Marcel·lí Domingo s/n. Campus Sant Pere Sescelades, 43007 Tarragona, Spain
(2) IRTA Torre Marimon, Ecofisiologia, Torre Marimon. 08140 Caldes de Montbui, Spain

Contact the author

Keywords

Climate, Vitis, grapevine, drought, phenols

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content,

Sensorial characteristic of single variety red wines from four local variants of Tempranillo

It is well-known that there is a relationship between the “terroir” and the characteristics of grapes and quality of wines. However, adequate grape variety and other cultural factors should be also taken into account

SmartGrape: early detection of cicada-borne vine diseases using field spectroscopy and detection of volatile plant scents

Bois noir (BN) is a cicada-transmitted grapevine disease that today causes up to 50% yield and vine loss in vineyards. It is caused by the phytoplasma Candidatus Phytoplasma solani (16SrXII-A).

Adaptation and resilience of scions and rootstocks to water constraint? It’s complicated and requires an integrated approach

The ability, and the underlying mechanisms of grapevines to cope with and adapt to recurring water constraints, are the focuses of this study.