Effects of mesoclimate on the yield, quality and phenolic maturity of Grenache

Abstract

The potential climate change, due to global change, will increase temperature general and could increase at local level. These changes are not going to be the same in different parts of the world, being especially important in the Mediterranean Basin. Thus, according to the most pessimistic predictions temperature can rise until 4ºC and precipitation can be reduced close to 20% but this would be different according local conditions, being also changes in the distribution. In order to study the differences promoted by these climate differences we compared the phenology, yield and quality parameters of Grenache, grafted onto 110-R in two mesoclimatic areas in Catalonia (Spain), Batea (TA: Terra Alta Appellation) and Caldes de Montbui (CAT: Catalunya Appellation) during two consecutive years 2007 and 2008.
In TA rainfall and potential evapotranspiration (ET0) were higher than in CAT, but accumulated growing degree days (∑GDD) were lower, due to lower maximum temperatures and higher minimum temperatures in winter in CAT. The year 2007 was drier and warmer in both locations. Yield was significantly lower only in CAT2007, being no differences in leaf area, nor pruning weight. Veraison and harvest were advanced in 2007 in both locations. Phenological stages were longer in CAT both years. The length of the period between flowering to veraison, and from veraison to harvest is longer when accumulated rainfall during each period is higher. On the other hand, the higher the average of GDD during the period, the shorter the period was. Probable alcohol degree (PAD), Total Phenol Index (TPI), Color Index (CI), Anthocyanin Content (ANTT and ANTE), were higher and Flavan-3-ols content (DMACH) and Seed Maturity (SM) were lower in 2008, in both locations than in 2007, which could indicate that these parameters are very affected by drought, that in 2007 was one of the most dry ripening periods of last century in Catalonia.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Nadal (1), F. de Herralde (2), M. Edo (1), M. Lampreave (1), R.Savé (1)

(1) Grup de Recerca Viti-vinicultura, Facultat d’Enologia, Dept. Bioquímica i Biotecnologia, URV Marcel·lí Domingo s/n. Campus Sant Pere Sescelades, 43007 Tarragona, Spain
(2) IRTA Torre Marimon, Ecofisiologia, Torre Marimon. 08140 Caldes de Montbui, Spain

Contact the author

Keywords

Climate, Vitis, grapevine, drought, phenols

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.

Advancing wine authentication: non-invasive near-infrared spectroscopy and machine learning for vintage and quality traits assessment

Wine fraud, encompassing counterfeiting and adulteration, poses a significant threat to the wine industry, resulting in annual losses totalling billions of dollars.

Mesoclimate and Topography influence on grape composition and yield in the AOC Priorat

The Priorat AOC, which is situated behind the coastal mountain range of Tarragona, is characterised by a Mediterranean climate that tends towards continentality and has very little precipitation during the vegetation cycle

Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

In vineyards grown in warm areas, it is usual that the stage of maturity of the grapes is fast and easily reach a high concentration of sugar and low acidity, but not a adequate phenolic maturation. The geometry of the trellis system and the shoot density can modify the microclimate of the cluster and, therefore, the maturation process.