Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 The geological and geomorphological events that determine the soil functional characters of a terroir

The geological and geomorphological events that determine the soil functional characters of a terroir

Abstract

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.
This work is aimed at demonstrating that the soil functional characters which differentiate the terroirs of a denomination of origin area are products and witnesses of the geological and geomorphological events, natural and human induced, which occurred in that trait of land. The final scope being enhancing the awareness of stakeholders about the possible environmental and economic losses that can derive from an irrational soil management, which can lead to the worsening or loss of irreproducible soil functional characters of the best terroirs.
The work makes reference to the denomination of origin ”Vino Nobile di Montepulciano”, where a four years research was conducted on the relationships between soil characteristics and the viticultural and oenological behaviour of Sangiovese vine. The soils of the Montepulciano vineyard range notably in fertility conditions and functional characters, also when formed on the same kind of sediments, in particular as for water and oxygen availability. The grape production at vintage, as well as the organoleptic characteristics of the wine, resulted strictly interactive with the different soils. The wines obtained on a first group of soils had a good structure and typicity, but the stability of wine sensorial profile during the years was low. A second group exhibited good structure, typicity, and a good stability of wine sensorial profile. A third group had low structure, low typicity, and high astringency all the years of trial.
The oldest soils of the Montepulciano vineyard started their formation during the Pleistocene. During the medium Holocene, man deeply influenced pedogenesis, but it is during the last 50 years that the intensity of the man action reached its maximum. Pre-plantation activities of the new specialized vineyards upset the land, leaving very different effects on soil functional characters. Where the soils before vine plantation were deep and rather homogeneous, soil functional characters remained the same, whereas they changed significantly where soils were shallower. Shallow soils on marine clays, in particular, resulted very vulnerable.
Best soils for the Nobile di Montepulciano wine production, that is, those belonging to the second group, were old soils, formed as a consequence of particular natural and human induced geomorphological events. Therefore they should be considered cultural heritages.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

E. A.C. Costantini, P. Bucelli, S. Priori

Agricultural Research Council, Research centre for Agrobiology and Pedology, p. D’Azeglio 30, Firenze, Italy

Contact the author

Keywords

Climate change, cultural heritage, wine, quality, Sangiovese, Vino Nobile di Montepulciano

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Aims: Establishing an image of fine wine through the Geographical Indication (GI) system is of interest to the Australian wine sector. Beyond provenance, the sensory experience of fine wine is often linked to consumption with appropriate foods. For this purpose, studies were undertaken to understand consumer perceptions of what

Soluble solids and firmness responses of a very slow ripening mutant to ripening acceleration treatments

Wine grapes have the ability to accumulate high amounts of hexoses (glucose and fructose), which is considered one of the main processes occurring during the ripening stage. Sugar accumulation dynamics respond to genetic, environmental and vineyard management factors, with a changing climate leading to advanced and faster sugar accumulation worldwide. Research on mitigation techniques to this phenomenon is ongoing, with the largest focus being vineyard techniques to delay sugar accumulation. Breeding represents another powerful tool to address the issue of high sugar concentration at harvest, since historical trends of selecting best sugar-accumulators may be inverted to breed varieties that accumulate diminished concentrations of hexoses while maintaining optimal acidity, color, mouthfeel and aroma compounds.

Digitalization and valorization of the genotypic and phenotypic information retained within the FEM grapevine germplasm

The maintenance and valorization of genetic diversity is an undoubtable resource for the viticulture of the future, since the climate crisis is forcing us to think of new, more resilient varieties. For this reason, the grapevine germplasm of the Fondazione Edmund Mach has been continuously expanded in the last decade to a total of 3,120 accessions, whose trueness-to-type has been verified by means of the universal set of nine microsatellites. About two thirds are V. vinifera subsp. vinifera accessions, while the rest consists of naturalized and selected hybrids, V. vinifera subsp. sylvestris, and pure species. The genetic material has also been characterized over three consecutive years for ampelographic, vine development, and biotic stress response traits to be exploited for experimental purposes.

Zoning the climatic potentialities and risk of vineyards & wine production regions

In this video recording of the IVES science meeting 2021, Benjamin Bois (Institut Universitaire de la Vigne et du Vin – IUVV, Université de Bourgogne, Dijon, France) speaks about zoning the climatic potentialities and risk of vineyards & wine production regions. This presentation is based on an original article accessible for free on OENO One