Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 The geological and geomorphological events that determine the soil functional characters of a terroir

The geological and geomorphological events that determine the soil functional characters of a terroir

Abstract

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.
This work is aimed at demonstrating that the soil functional characters which differentiate the terroirs of a denomination of origin area are products and witnesses of the geological and geomorphological events, natural and human induced, which occurred in that trait of land. The final scope being enhancing the awareness of stakeholders about the possible environmental and economic losses that can derive from an irrational soil management, which can lead to the worsening or loss of irreproducible soil functional characters of the best terroirs.
The work makes reference to the denomination of origin ”Vino Nobile di Montepulciano”, where a four years research was conducted on the relationships between soil characteristics and the viticultural and oenological behaviour of Sangiovese vine. The soils of the Montepulciano vineyard range notably in fertility conditions and functional characters, also when formed on the same kind of sediments, in particular as for water and oxygen availability. The grape production at vintage, as well as the organoleptic characteristics of the wine, resulted strictly interactive with the different soils. The wines obtained on a first group of soils had a good structure and typicity, but the stability of wine sensorial profile during the years was low. A second group exhibited good structure, typicity, and a good stability of wine sensorial profile. A third group had low structure, low typicity, and high astringency all the years of trial.
The oldest soils of the Montepulciano vineyard started their formation during the Pleistocene. During the medium Holocene, man deeply influenced pedogenesis, but it is during the last 50 years that the intensity of the man action reached its maximum. Pre-plantation activities of the new specialized vineyards upset the land, leaving very different effects on soil functional characters. Where the soils before vine plantation were deep and rather homogeneous, soil functional characters remained the same, whereas they changed significantly where soils were shallower. Shallow soils on marine clays, in particular, resulted very vulnerable.
Best soils for the Nobile di Montepulciano wine production, that is, those belonging to the second group, were old soils, formed as a consequence of particular natural and human induced geomorphological events. Therefore they should be considered cultural heritages.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

E. A.C. Costantini, P. Bucelli, S. Priori

Agricultural Research Council, Research centre for Agrobiology and Pedology, p. D’Azeglio 30, Firenze, Italy

Contact the author

Keywords

Climate change, cultural heritage, wine, quality, Sangiovese, Vino Nobile di Montepulciano

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Early ripening in cool climate viticulture varieties is mainly based on a mutation in ‘Pinot precocé noir’

For a long time, cool climate grapevine breeding has striven for early ripening cultivars to adapt to the former climate conditions.

Sensory quality of wines as a trait in MAS grape vine breeding – sensory insights from multiple vintages in a F1 breeding population

In the context of the three global crises of global warming, loss of biodiversity and environmental pollution, current agricultural practices need to be reconsidered [1]. Viticulture in particular can contribute to this by optimising plant protection [2].

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

Soil management with cover crops in irrigated vineyards: effects in vine microclimate (cv. Malbec) grown in a terroir of Agrelo (Luján de Cuyo)

L’objectif de cette recherche a été de déterminer les effets de l’enherbement dans le microclimat de la vigne. On a comparé cinq couvertures de cycle végétatif différent en ce qui concerne l’entretien du sol sans culture par application d’herbicides. L’étude a été developpée dans un vignoble cv. Malbec conduit en haute espalier, situé en a terroir á Agrelo, Luján de Cuyo, Mendoza, Argentine. On a déterminé des paramètres micro climatiques: