Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effect of potential crop on vine water constraint

Effect of potential crop on vine water constraint


It is important to quantify the effect of potential crop on vine water constraint in order to adapt vine-growing consulting and vine management to the Mediterranean climate conditions. Experiments were conducted during two years running (2006 and 2007) on varieties Grenache and Syrah in a situation of high water constraint in the Rhône Valley. Yields were regulated by hand cluster thinning before flowering or at the end of fruit-set, to 4 clusters per vine for the “low charge” modality and to 14 clusters per vine for the “high charge” modality. Yield measures were done during harvest: “low charge” modality varies from 30 to 50 % to the “high charge” modality. In these conditions, none of the predawn leaf water potential measures help identify an effect of potential crop on vine water constraint for Grenache (from flowering to harvest), for levels of water constraint up to –1,5MPa and for normal plot densities (4444 vines/ha). For Syrah, 2006 did not show significant differences between the two modalities, although 2007 seams so lead to a higher constraint for the “high charge” modality. The observation of the evolution of leaf water potential up to Sun mid-day shows that “high charge” modalities tend to express higher constraint than “low charge” modalities, although the differences are not significant.


Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article


Jean-Christophe PAYAN, Elian SALANÇON

IFV – Institut Français de la Vigne et du vin,Domaine de Donadille,F-30230 RODILHAN

Contact the author


 Water constraint, harvest yield, Grenache, Syrah 


IVES Conference Series | Terroir 2008


Related articles…

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Esca, one of the main grapevine trunk diseases, is a complex and poorly understood disease. Phaeoacremonium minimum and Phaeomoniella chlamydospora, two of the main pathogens associated to this disease, are thought to be responsible for the first trunk infections. Little is known concerning grapevine trunk defenses during pathogen infection.

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).


The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).