Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 The geological and geomorphological events that determine the soil functional characters of a terroir

The geological and geomorphological events that determine the soil functional characters of a terroir

Abstract

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.
This work is aimed at demonstrating that the soil functional characters which differentiate the terroirs of a denomination of origin area are products and witnesses of the geological and geomorphological events, natural and human induced, which occurred in that trait of land. The final scope being enhancing the awareness of stakeholders about the possible environmental and economic losses that can derive from an irrational soil management, which can lead to the worsening or loss of irreproducible soil functional characters of the best terroirs.
The work makes reference to the denomination of origin ”Vino Nobile di Montepulciano”, where a four years research was conducted on the relationships between soil characteristics and the viticultural and oenological behaviour of Sangiovese vine. The soils of the Montepulciano vineyard range notably in fertility conditions and functional characters, also when formed on the same kind of sediments, in particular as for water and oxygen availability. The grape production at vintage, as well as the organoleptic characteristics of the wine, resulted strictly interactive with the different soils. The wines obtained on a first group of soils had a good structure and typicity, but the stability of wine sensorial profile during the years was low. A second group exhibited good structure, typicity, and a good stability of wine sensorial profile. A third group had low structure, low typicity, and high astringency all the years of trial.
The oldest soils of the Montepulciano vineyard started their formation during the Pleistocene. During the medium Holocene, man deeply influenced pedogenesis, but it is during the last 50 years that the intensity of the man action reached its maximum. Pre-plantation activities of the new specialized vineyards upset the land, leaving very different effects on soil functional characters. Where the soils before vine plantation were deep and rather homogeneous, soil functional characters remained the same, whereas they changed significantly where soils were shallower. Shallow soils on marine clays, in particular, resulted very vulnerable.
Best soils for the Nobile di Montepulciano wine production, that is, those belonging to the second group, were old soils, formed as a consequence of particular natural and human induced geomorphological events. Therefore they should be considered cultural heritages.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

E. A.C. Costantini, P. Bucelli, S. Priori

Agricultural Research Council, Research centre for Agrobiology and Pedology, p. D’Azeglio 30, Firenze, Italy

Contact the author

Keywords

Climate change, cultural heritage, wine, quality, Sangiovese, Vino Nobile di Montepulciano

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Terroir, sol et sous-sol : principes de modélisation spatiale de quelques paramètres physiques caractérisant le substrat altéré dans les régions viticoles établies sur socle ancien

For several years, the development of computer resources, and in particular of Geographic Information Systems, have allowed the emergence of a new approach to the analysis and characterization of wine-growing areas (Morlat, 1989; Laville, 1990). These methods, which make it possible to identify homogeneous areas or units of terroir, are based on crossing, statistical analysis (in particular Principal Component Analysis: PCA) and the integration of parameters describing the natural environment in which develop the vine.

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.