Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Abstract

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity. This study compares three different sensors to delineate soil boundaries and estimate clay, skeleton content and available water (AWC) in a vineyard of the Chianti region (Central Italy). All three sensors produced ECa maps with similar pattern. Although the correlations between ECa, clay and skeleton content were usually moderate, the correlations between ECa and some important hydrological parameters, namely field capacity (FC), wilting point (WP) and available water capacity (AWC), was very high.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

S. Priori (1), E.A.C. Costantini (1), A. Agnelli (1), S. Pellegrini (1), E. Martini (2)

(1) C.R.A.-A.B.P., Research Center for Agrobiology and Pedology, Piazza M.D’Azeglio, 30, 50121, Firenze, Italy
(2) University of Turin, Earth Science Department, Turin, Italy

Contact the author

Keywords

Soil, precision viticulture, geophysics, EMI sensors, apparent electrical conductivity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Soluble solids and firmness responses of a very slow ripening mutant to ripening acceleration treatments

Wine grapes have the ability to accumulate high amounts of hexoses (glucose and fructose), which is considered one of the main processes occurring during the ripening stage. Sugar accumulation dynamics respond to genetic, environmental and vineyard management factors, with a changing climate leading to advanced and faster sugar accumulation worldwide. Research on mitigation techniques to this phenomenon is ongoing, with the largest focus being vineyard techniques to delay sugar accumulation. Breeding represents another powerful tool to address the issue of high sugar concentration at harvest, since historical trends of selecting best sugar-accumulators may be inverted to breed varieties that accumulate diminished concentrations of hexoses while maintaining optimal acidity, color, mouthfeel and aroma compounds.

The Albariño route in Uruguay: A clonal selection process to produce quality wines

In recent years, Uruguay has embraced the Albariño grape variety (Vitis vinifera L.) as one of the most promising for commercial growth. Originally cultivated in Galicia and northern Portugal, Albariño has risen to prominence in the global wine market, driving strong demand and significantly increasing grape prices [1].

The Pampa and the vineyard: gaucho´s natural and symbolic aspects in the identity´s constitution of “Vinhos da Campanha”’s terroir – RS/Brasil

The wine region of “Vinhos da Campanha” is located in southern Brazil, on the Uruguay borderline. The colonization’s process in the region was characterized by territorial disputes between Portuguese

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.