Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Abstract

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity. This study compares three different sensors to delineate soil boundaries and estimate clay, skeleton content and available water (AWC) in a vineyard of the Chianti region (Central Italy). All three sensors produced ECa maps with similar pattern. Although the correlations between ECa, clay and skeleton content were usually moderate, the correlations between ECa and some important hydrological parameters, namely field capacity (FC), wilting point (WP) and available water capacity (AWC), was very high.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

S. Priori (1), E.A.C. Costantini (1), A. Agnelli (1), S. Pellegrini (1), E. Martini (2)

(1) C.R.A.-A.B.P., Research Center for Agrobiology and Pedology, Piazza M.D’Azeglio, 30, 50121, Firenze, Italy
(2) University of Turin, Earth Science Department, Turin, Italy

Contact the author

Keywords

Soil, precision viticulture, geophysics, EMI sensors, apparent electrical conductivity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Recent advancements in understanding the terroir effect on aromas in grapes and wines

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds,

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management

Iso-/anisohydric behavior in wine grapes may be a matter of soil moisture

There are claims that wine grape cultivars are either isohydric or anisohydric; the former maintaining, and the latter decreasing, their plant water status as soil moisture declines. However, available information is inconsistent. There are those that show an existence of a continuum in cultivar response to soil moisture rather than a distinct categorization. Others even show both behaviors in the same cultivar grown in different environments. In this study we investigated the behavior of 30 own rooted Vitis vinifera cultivars during successive drydown and rewatering cycles over two growing seasons in arid eastern Washington (<200 mm annual precipitation).

Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

The Maillard reaction (MR) is a non-enzymatic reaction between reducing sugars and amino acids, resulting in the production of volatile and flavour-active compounds.

Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

In greenhouse, emission of volatile organic compounds (VOC) by grapevine leaves has already been reported in response to the defence elicitor sulfated laminarin (PS3) [1]. In order to check that this response was not specific to PS3, experiments were conducted on Vitis cv Marselan plantlets with several other elicitors of different chemical structures: i.e. Bastid® (COS-OGA),