Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

Abstract

The Columbia Valley American Viticultural Area (AVA) of the Pacific Northwest, USA is the world’s largest officially recognized viticultural area with basalt bedrock. However, most Columbia Valley vineyards are planted in soils derived from thick loess and glacial flood sediments, rather than the underlying bedrock. Recently, vineyard plantings have expanded into parts of the AVA where basalt and basalt weathering products, derived either naturally or through mechanical ripping, are a major soil component. Tests were conducted to determine how the addition of a basalt component to soils could affect the terroir of Columbia Valley vineyards. To test for the chemical influence of basalt, samples were obtained from soils representative of the range of basalt influence and analyzed for iron content. Increases of 77% to 233% in available iron were observed in vineyards with basalt component relative to vineyards planted in grass-covered loess. To measure the thermal influence of basalt, temperature data loggers were installed within soils and grape clusters in basalt-covered and grass-covered vineyards. Temperature loggers in the basalt-covered vineyard recorded an 18% increase in average soil temperature at a depth of 5 cm, a 13% increase in average soil temperature at a depth of 25 cm, and a 4% in average cluster temperature relative to those in the grass-covered vineyard. Cluster temperatures in the basalt-covered vineyard were generally higher than in the grass-covered vineyard from late morning through early evening, equilibrating rapidly near sunset.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

K. R. Pogue

Department of Geology, Whitman College
345 Boyer Ave., Walla Walla, Washington 99362 USA

Contact the author

Keywords

basalt, terroir, soil, Columbia Valley

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine.

Influence des facteurs naturels du terroir sur la maturation du raisin en Alsace

A study of the influence of environmental factors on the ripening of grapes under the conditions of Alsace is carried out. Emphasis is placed on the analysis of the mesoclimate and pedoclimate. The experiment is conducted on a network of plots of gewurztraminer grafted on SO4. The production conditions are standardized throughout the device.