Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

Abstract

The Columbia Valley American Viticultural Area (AVA) of the Pacific Northwest, USA is the world’s largest officially recognized viticultural area with basalt bedrock. However, most Columbia Valley vineyards are planted in soils derived from thick loess and glacial flood sediments, rather than the underlying bedrock. Recently, vineyard plantings have expanded into parts of the AVA where basalt and basalt weathering products, derived either naturally or through mechanical ripping, are a major soil component. Tests were conducted to determine how the addition of a basalt component to soils could affect the terroir of Columbia Valley vineyards. To test for the chemical influence of basalt, samples were obtained from soils representative of the range of basalt influence and analyzed for iron content. Increases of 77% to 233% in available iron were observed in vineyards with basalt component relative to vineyards planted in grass-covered loess. To measure the thermal influence of basalt, temperature data loggers were installed within soils and grape clusters in basalt-covered and grass-covered vineyards. Temperature loggers in the basalt-covered vineyard recorded an 18% increase in average soil temperature at a depth of 5 cm, a 13% increase in average soil temperature at a depth of 25 cm, and a 4% in average cluster temperature relative to those in the grass-covered vineyard. Cluster temperatures in the basalt-covered vineyard were generally higher than in the grass-covered vineyard from late morning through early evening, equilibrating rapidly near sunset.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

K. R. Pogue

Department of Geology, Whitman College
345 Boyer Ave., Walla Walla, Washington 99362 USA

Contact the author

Keywords

basalt, terroir, soil, Columbia Valley

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.

Improving grapevine cloning material of Welshriesling by comprehensive analysis

The important grape variety Welschriesling for Austrian and Southeast European viticulture has been selectively bred over the years for improving some quantitative traits. Collected genotypes as well as the local clones were examined from agricultural, analytical, sensory, and genetic perspectives.

Irrigation as a tool for heatwave mitigation: the effect of irrigation intensity and timing in Cabernet Sauvignon

Heatwave events, defined as 2 or more days reaching ≥ 38 °C, are an increasingly frequent phenomenon threatening grape production worldwide. Heat stress has been shown to have negative consequences on grapevine physiology, leading to increased evaporative demand and intensified water stress. Due to heatwaves overlapping with important stages of grapevine reproductive development, spanning from berry set to the ripening stage, severe heat can potentially compromise yield and grape quality. The physiological response of grapevine to heat stress suggests a potential use of irrigation to mitigate heatwaves, however there is limited information regarding the irrigation amounts and timings needed for this purpose. Following up on a pivotal trial conducted between 2019 and 2022, in this study irrigation treatments with varying intensity and timing of application were refined to determine their potential mitigation of heat-associated damage to yield and fruit composition.