Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

Abstract

The Columbia Valley American Viticultural Area (AVA) of the Pacific Northwest, USA is the world’s largest officially recognized viticultural area with basalt bedrock. However, most Columbia Valley vineyards are planted in soils derived from thick loess and glacial flood sediments, rather than the underlying bedrock. Recently, vineyard plantings have expanded into parts of the AVA where basalt and basalt weathering products, derived either naturally or through mechanical ripping, are a major soil component. Tests were conducted to determine how the addition of a basalt component to soils could affect the terroir of Columbia Valley vineyards. To test for the chemical influence of basalt, samples were obtained from soils representative of the range of basalt influence and analyzed for iron content. Increases of 77% to 233% in available iron were observed in vineyards with basalt component relative to vineyards planted in grass-covered loess. To measure the thermal influence of basalt, temperature data loggers were installed within soils and grape clusters in basalt-covered and grass-covered vineyards. Temperature loggers in the basalt-covered vineyard recorded an 18% increase in average soil temperature at a depth of 5 cm, a 13% increase in average soil temperature at a depth of 25 cm, and a 4% in average cluster temperature relative to those in the grass-covered vineyard. Cluster temperatures in the basalt-covered vineyard were generally higher than in the grass-covered vineyard from late morning through early evening, equilibrating rapidly near sunset.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

K. R. Pogue

Department of Geology, Whitman College
345 Boyer Ave., Walla Walla, Washington 99362 USA

Contact the author

Keywords

basalt, terroir, soil, Columbia Valley

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Everything else, it’s work ”Socio-cultural dimensions of terroir among Bordeaux winemakers

In 2010, the OIV adopted a resolution that defines ‘terroir’. The OIV definition understands terroir as the result of the interactions between the physical specificities of a space and human labor, with an emphasis on the subsequently produced collective knowledge (OIV-VITI 333-2010); by doing so, it alludes to the social and cultural dimensions of terroir.

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity.

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars.

Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Dimethyl sulfide (DMS) is a low molecular weight sulfur compound produced in wine during aging by the chemical degradation of S-Methyl-L-methionine (SMM). Investigating the aromatic profile of Amarone commercial wines from different wineries, it was found that DMS presented a high variation in concentration across wine samples ranging from 2.88 to 64.34 μg/L, which potentially can