Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

Abstract

The Columbia Valley American Viticultural Area (AVA) of the Pacific Northwest, USA is the world’s largest officially recognized viticultural area with basalt bedrock. However, most Columbia Valley vineyards are planted in soils derived from thick loess and glacial flood sediments, rather than the underlying bedrock. Recently, vineyard plantings have expanded into parts of the AVA where basalt and basalt weathering products, derived either naturally or through mechanical ripping, are a major soil component. Tests were conducted to determine how the addition of a basalt component to soils could affect the terroir of Columbia Valley vineyards. To test for the chemical influence of basalt, samples were obtained from soils representative of the range of basalt influence and analyzed for iron content. Increases of 77% to 233% in available iron were observed in vineyards with basalt component relative to vineyards planted in grass-covered loess. To measure the thermal influence of basalt, temperature data loggers were installed within soils and grape clusters in basalt-covered and grass-covered vineyards. Temperature loggers in the basalt-covered vineyard recorded an 18% increase in average soil temperature at a depth of 5 cm, a 13% increase in average soil temperature at a depth of 25 cm, and a 4% in average cluster temperature relative to those in the grass-covered vineyard. Cluster temperatures in the basalt-covered vineyard were generally higher than in the grass-covered vineyard from late morning through early evening, equilibrating rapidly near sunset.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

K. R. Pogue

Department of Geology, Whitman College
345 Boyer Ave., Walla Walla, Washington 99362 USA

Contact the author

Keywords

basalt, terroir, soil, Columbia Valley

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles.

Water recharge before budbreak and/or deficit irrigation during summer: agronomic effects on cv. Tempranillo in the D.O. Ribera del Duero

The availability of water in the soil and the water status of the vineyard are proving to be determining factors for crop management in the current context of climatic variation