Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Assessment of the optimal number of observations in the study of vineyard soil (Rigosol)

Assessment of the optimal number of observations in the study of vineyard soil (Rigosol)

Abstract

A study of soil pH on the experimental field resulted in a high variability of pH on a very small scale. This kind of heterogenity in soil pH have effects on growth of two grapevine varieties on rootstock Kober 5BB: Riesling and Pinot Noir A number of 104 soil samples were taken from an area of 1.43 ha from two depths. A goal of this experiment was to find the optimum number of samples for pH studies, and to implement the obtained results in further investigation on experimental fields. Therefore, in this paper we compared diferent deterministic interpolation techniques: inverse distance weight, splines and local polynomial interpolation, on the results of soil pH. Root mean square error (RMSE) statistitics obtained after cross validation procedure was used for the choice of appropriate exponent value for IDW, spline and local interpolation. The obtained interpolation parameters were used for mapping the field and the most accurate technique was IDW, which was further used in creation of pH maps with lower number of samples: 54, 34, 29, 24, 19 and only 14 pH samples. Maps were classified and compared by means of percentage difference in area among classes of pH in respect to classes obtained after maximum sampling. The results indicated that the criteria of 15% of change in pH area over classes could be satisfied with only on third of the samples. An obtained results will be used for further sampling of the whole experimental area.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Djordjević, A., Životić, Lj., Sivčev, B., Pajić, V., Ranković-Vasić, Z., Radovanović, D

University of Belgrade, Faculty of Agriculture, Nemanjina 6, Belgrade, Zemun, Republic of Serbia

Contact the author

Keywords

vineyard, soil, pH, interpolation, IDW, RBF, LP

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

The Bergerac guaranteed vintage area « terroirs »

The vineyard of Bergerac, a guaranteed vintage, is situated in the mid-Lot valley, which has siliceous terraced rows on its hillsides, and on its bordering plateaux, composed of limestone and clay of the tertiary geological eras.

The Fontevraud charter in favour of the viticultural landscapes

The viticultural regions of the world have the advantage of a remarkable diversity of landscapes which are the reflection of the winegrowers’ capacity to adapt to the different geomorphological and climatic specificities of the terroirs, more generally speaking, this aesthetic and heritage aspect of the terroir is also part and parcel of the notion of sustainable viticulture.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.