Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Assessment of the optimal number of observations in the study of vineyard soil (Rigosol)

Assessment of the optimal number of observations in the study of vineyard soil (Rigosol)

Abstract

A study of soil pH on the experimental field resulted in a high variability of pH on a very small scale. This kind of heterogenity in soil pH have effects on growth of two grapevine varieties on rootstock Kober 5BB: Riesling and Pinot Noir A number of 104 soil samples were taken from an area of 1.43 ha from two depths. A goal of this experiment was to find the optimum number of samples for pH studies, and to implement the obtained results in further investigation on experimental fields. Therefore, in this paper we compared diferent deterministic interpolation techniques: inverse distance weight, splines and local polynomial interpolation, on the results of soil pH. Root mean square error (RMSE) statistitics obtained after cross validation procedure was used for the choice of appropriate exponent value for IDW, spline and local interpolation. The obtained interpolation parameters were used for mapping the field and the most accurate technique was IDW, which was further used in creation of pH maps with lower number of samples: 54, 34, 29, 24, 19 and only 14 pH samples. Maps were classified and compared by means of percentage difference in area among classes of pH in respect to classes obtained after maximum sampling. The results indicated that the criteria of 15% of change in pH area over classes could be satisfied with only on third of the samples. An obtained results will be used for further sampling of the whole experimental area.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Djordjević, A., Životić, Lj., Sivčev, B., Pajić, V., Ranković-Vasić, Z., Radovanović, D

University of Belgrade, Faculty of Agriculture, Nemanjina 6, Belgrade, Zemun, Republic of Serbia

Contact the author

Keywords

vineyard, soil, pH, interpolation, IDW, RBF, LP

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides.

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.