Potentiel des sols viticoles et qualité des vins

Abstract

[English version below]

La qualité des vins dépend de différents facteurs et procédés, notamment de la nature des terrains viticoles. Dans ce travail, nous avons cherché à établir les liens entre descripteurs pédologiques des parcelles et descripteurs sensoriels des vins. Sur la base de Classifications Ascendantes Hiérarchiques (CAH) et d’Analyses en Composante Principale (ACP), il a été possible d’établir des liens entre la nature des parcelles (sableuse, argileuse, sablo-graveuleuse) et certains descripteurs sensoriels des vins (chaleur, astringence, fruit noir) et plus globalement avec le type de vins élaborés.

Wine quality depends on various factors and processes, including type of soil. In this study, we sought to establish links between pedological data and sensory attributes of wines. Based on Hierarchical Ascendant Classification (HAC) and Principal Component Analysis (PCA), it was possible to establish links between the nature of the parcels (sandy, clayey, gravelly-sand) and some wine sensory descriptors (heat, astringency, black fruit) and more generally with the type of wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

BROUSSET JM (1), PICQUE D (1), GUERIN L (2), GOULET E (2,3) PERROT N (1)

(1) UMR 782, GMPA, INRA, AgroParisTech, F-78850 Thiverval-Grignon
(2) IFV du Val de Loire, 42, rue G. Morel, F-49071 Beaucouzé / 46, Av. G. Eiffel, F-37095 Tours cedex 2
(3) InterLoire, 12, rue E. Pallu – F-37000 Tours

Keywords

pédologie, type de vin, CAH, ACP
pedology, Wine type, HAC, PCA

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Un jour, l’AOD (Appellation d’Origine viticole Durable), fusion de l’origine et de la durabilité

The evolution of wine quality issues is historically expressed by the passage from wine quality (what is a wine?) to wine quality (what is a good wine?). Perhaps the next question could be: what is a good sustainable wine? To contribute to reflection on this theme, it may be worthwhile to undertake an exercise in prospective fiction, which we have identified in the hypothesis of the AOD, the “appellation d’origine durable”, a scenario we will develop in the light of developments in the wine industry and the regulation on geographical indications.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

Alternative training system for cv ‘Erbaluce’: comparison between pergola and VSP system during 2006 and 2007 years

The ‘Erbaluce‘, a grapevine cultivar from which in the Canavese (Piedmont, Italy) different types of white DOC wines are obtained, is traditionally trained on a support structure commonly known as “pergola” having three to five long “cords” which consist of three cordons and canes interlaced together.

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.