Potentiel des sols viticoles et qualité des vins

Abstract

[English version below]

La qualité des vins dépend de différents facteurs et procédés, notamment de la nature des terrains viticoles. Dans ce travail, nous avons cherché à établir les liens entre descripteurs pédologiques des parcelles et descripteurs sensoriels des vins. Sur la base de Classifications Ascendantes Hiérarchiques (CAH) et d’Analyses en Composante Principale (ACP), il a été possible d’établir des liens entre la nature des parcelles (sableuse, argileuse, sablo-graveuleuse) et certains descripteurs sensoriels des vins (chaleur, astringence, fruit noir) et plus globalement avec le type de vins élaborés.

Wine quality depends on various factors and processes, including type of soil. In this study, we sought to establish links between pedological data and sensory attributes of wines. Based on Hierarchical Ascendant Classification (HAC) and Principal Component Analysis (PCA), it was possible to establish links between the nature of the parcels (sandy, clayey, gravelly-sand) and some wine sensory descriptors (heat, astringency, black fruit) and more generally with the type of wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

BROUSSET JM (1), PICQUE D (1), GUERIN L (2), GOULET E (2,3) PERROT N (1)

(1) UMR 782, GMPA, INRA, AgroParisTech, F-78850 Thiverval-Grignon
(2) IFV du Val de Loire, 42, rue G. Morel, F-49071 Beaucouzé / 46, Av. G. Eiffel, F-37095 Tours cedex 2
(3) InterLoire, 12, rue E. Pallu – F-37000 Tours

Keywords

pédologie, type de vin, CAH, ACP
pedology, Wine type, HAC, PCA

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Characterization of winegrape berries’ composition on sorting tables using hyperspectral imaging and AI

Comprehensive evaluation of grape composition at winery receiving areas often requires multiple measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming and involve sample preparation.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

NIR based sensometric approach for consumer preference evaluation

Climate change has had a global impact on grape production, and as a result, developing table grape varieties that can withstand climate-related threats has become a significant goal. However, it is equally important to ensure that these new grape varieties meet the preferences of consumers. To achieve this goal, a procedure has been developed that combines sensory analysis with spectroscopic data collected in the NIR region. Each sample was analyzed using both traditional analytical techniques and non-destructive NIR spectroscopy.

Valorisation of integrated research on vineyard soils. Adaptation to the Val de Loire vineyard

La mise en valeur d’un terroir au travers du vin signifie dans un premier temps le respect du cahier des charges de l’A.O.C correspondante. Dans un second temps, elle sous-entend d’être à l’écoute des évolutions scientifiques, techniques et sociétales afin de satisfaire une production plus respectueuse de l’environnement et de la santé des hommes. Les recherches effectuées par l’Unité Vigne et Vin du centre INRA d’Angers ont débouché sur le concept d’UTB, Unité Terroir de Base (R.Morlat). UTB définit une aire de terrain ou le fonctionnement de la vigne est homogène en tous points.

Application of regenerative agriculture to viticulture: The REVINE project

Conventional viticulture improved the quality of production, but the economic costs can be unsustainable. Today, producers need to consider consumers’ demands for healthy, eco-friendly products. Institutions promote sustainable agriculture, with regenerative agriculture being the latest generation of methodologies focused on recovering losses and ensuring future sustainability. The revine project studies regenerative agricultural technology applied in mediterranean countries to provide precise indications for soil processing and effective vineyard treatments.