Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Abstract

Soil plays an important role in wine quality, especially its water holding capacity because it affects the balance between vigour and grape yield. The aim of this work was to study the influence of different soil types on the must quality in a vineyard at DO Ca Rioja. The study was carried out during 2006 and 2007 in a vineyard of eight hectares, located in Oyón in Northern Spain. Four soil types were established according to topography and parent material: deposition (deeper than 110 cm and irregular distribution of organic matter in depth), calcareous red argillite (depth of 85-100 cm, with a heavy clay layer with reddish colour at 85-100 cm), calcareous lutite (depth of 50-100 cm) and finally sandstone (depth of 25-80 cm, and high sand content in depth). Grape samples were collected at 190 grapevines distributed through the whole vineyard for analysing , potential alcohol, total tartaric acid, pH, and K, and anthocyanins concentrations and polyphenols and colour indexes. The influence of soil type on juice quality varied according to the year. In 2006, in the soils with the lower water content (Sandstones) the potential alcohol was the highest (12.92 º), while in 2007, the Red argillite soil (greater water availability) got the greatest potential alcohol (13.72º). The highest acidity was obtained in Depression soil (5.51 g L-1) and was higher in 2007 (5.48 g L-1) than in 2006 (5.07 g L-1). Potassium juice concentration (3068 mg L-1) was higher in the Red argillite soil type due to its higher soil K content, and this caused also the higher pH (3.48) shown in this soil. The anthocyanins content, and polyphenols and colour indexes reached higher values in the Sandstone soil (803 mg L-1, 64 and 24 respectively).

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Unamunzaga, O. (1), Castellón, A. (1), G. Besga (1), Gallejones, P. (2), Usón, A. (3), Aizpurua, A. (1)

(1) Neiker-Tecnalia. Basque Institute for Agrarian Research and Development; 48.160 Derio, Spain
(2) BC3 Basque Research Centre for the Climate Change. C/ GranVía, Bilbao, Spain
(3) Agricultural and Chemical Engineering School; University of Zaragoza, Huesca, Spain

Contact the author

Keywords

Terroir, Potential alcohol, poliphenols, colour index, anthocyanins, acidity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Contribution à l’étude des relations entre des variables de fonctionnement des terroirs du Val de Loire et l’évolution des acides organiques des baies durant la maturation du raisin

Dans les terroirs du Val de Loire, la précocité du cycle de la vigne et son alimentation en eau sont des variables de fonctionnement qui influent de manière importante sur la composition des baies à maturité.

A viticultural perspective of Meso-scale atmospheric modelling in the Stellenbosch wine growing area, South Africa

La brise de mer et les facteurs climatiques qu’elle entraîne (accélération de la vitesse du vent au cours de l’après midi, augmentation de l’humidité et baisse de la temperature) sont d’un intérêt particulier pour la viticulture.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Bioprotection en phase pré-fermentaire, synthèse de 3 ans d’expérimentations dans différentes régions viticoles

With growing consumer interest in products without chemical additives, limiting the use of sulfites is a priority for the wine industry. Bioprotection is a biological alternative that avoids or reduces the risks of alterations that have a negative impact on the organoleptic quality of wines and, ultimately, on their acceptability to consumers. bioprotection can also provide a response to the risks of microbiological deviations, which are increased both by climate change and by the organization of harvesting operations, which increasingly include the use of multi-bins filled at the vine, exposing the harvest to sometimes high temperatures for longer periods of time.

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030.