Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Abstract

Soil plays an important role in wine quality, especially its water holding capacity because it affects the balance between vigour and grape yield. The aim of this work was to study the influence of different soil types on the must quality in a vineyard at DO Ca Rioja. The study was carried out during 2006 and 2007 in a vineyard of eight hectares, located in Oyón in Northern Spain. Four soil types were established according to topography and parent material: deposition (deeper than 110 cm and irregular distribution of organic matter in depth), calcareous red argillite (depth of 85-100 cm, with a heavy clay layer with reddish colour at 85-100 cm), calcareous lutite (depth of 50-100 cm) and finally sandstone (depth of 25-80 cm, and high sand content in depth). Grape samples were collected at 190 grapevines distributed through the whole vineyard for analysing , potential alcohol, total tartaric acid, pH, and K, and anthocyanins concentrations and polyphenols and colour indexes. The influence of soil type on juice quality varied according to the year. In 2006, in the soils with the lower water content (Sandstones) the potential alcohol was the highest (12.92 º), while in 2007, the Red argillite soil (greater water availability) got the greatest potential alcohol (13.72º). The highest acidity was obtained in Depression soil (5.51 g L-1) and was higher in 2007 (5.48 g L-1) than in 2006 (5.07 g L-1). Potassium juice concentration (3068 mg L-1) was higher in the Red argillite soil type due to its higher soil K content, and this caused also the higher pH (3.48) shown in this soil. The anthocyanins content, and polyphenols and colour indexes reached higher values in the Sandstone soil (803 mg L-1, 64 and 24 respectively).

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Unamunzaga, O. (1), Castellón, A. (1), G. Besga (1), Gallejones, P. (2), Usón, A. (3), Aizpurua, A. (1)

(1) Neiker-Tecnalia. Basque Institute for Agrarian Research and Development; 48.160 Derio, Spain
(2) BC3 Basque Research Centre for the Climate Change. C/ GranVía, Bilbao, Spain
(3) Agricultural and Chemical Engineering School; University of Zaragoza, Huesca, Spain

Contact the author

Keywords

Terroir, Potential alcohol, poliphenols, colour index, anthocyanins, acidity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effects of winemaking variables on the chemical and sensory quality of Schiava wines up to one year storage in bottle

The interactive effects of three major enological variables were evaluated on the quality of Schiava wine up to one year of storage in bottle.

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology.