Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Abstract

Soil plays an important role in wine quality, especially its water holding capacity because it affects the balance between vigour and grape yield. The aim of this work was to study the influence of different soil types on the must quality in a vineyard at DO Ca Rioja. The study was carried out during 2006 and 2007 in a vineyard of eight hectares, located in Oyón in Northern Spain. Four soil types were established according to topography and parent material: deposition (deeper than 110 cm and irregular distribution of organic matter in depth), calcareous red argillite (depth of 85-100 cm, with a heavy clay layer with reddish colour at 85-100 cm), calcareous lutite (depth of 50-100 cm) and finally sandstone (depth of 25-80 cm, and high sand content in depth). Grape samples were collected at 190 grapevines distributed through the whole vineyard for analysing , potential alcohol, total tartaric acid, pH, and K, and anthocyanins concentrations and polyphenols and colour indexes. The influence of soil type on juice quality varied according to the year. In 2006, in the soils with the lower water content (Sandstones) the potential alcohol was the highest (12.92 º), while in 2007, the Red argillite soil (greater water availability) got the greatest potential alcohol (13.72º). The highest acidity was obtained in Depression soil (5.51 g L-1) and was higher in 2007 (5.48 g L-1) than in 2006 (5.07 g L-1). Potassium juice concentration (3068 mg L-1) was higher in the Red argillite soil type due to its higher soil K content, and this caused also the higher pH (3.48) shown in this soil. The anthocyanins content, and polyphenols and colour indexes reached higher values in the Sandstone soil (803 mg L-1, 64 and 24 respectively).

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Unamunzaga, O. (1), Castellón, A. (1), G. Besga (1), Gallejones, P. (2), Usón, A. (3), Aizpurua, A. (1)

(1) Neiker-Tecnalia. Basque Institute for Agrarian Research and Development; 48.160 Derio, Spain
(2) BC3 Basque Research Centre for the Climate Change. C/ GranVía, Bilbao, Spain
(3) Agricultural and Chemical Engineering School; University of Zaragoza, Huesca, Spain

Contact the author

Keywords

Terroir, Potential alcohol, poliphenols, colour index, anthocyanins, acidity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae.

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Grape typicity valorization can significantly enhance viticultural sector competitiveness to the extent that contributes to the development of a wine so distinctive and unique. This work leads to the characterization of the grapes through indicators expressing environmental effects.