Terroir 2010 banner
IVES 9 IVES Conference Series 9 Le terre dei Lambruschi modenesi

Le terre dei Lambruschi modenesi

Abstract

[English version below]

La superficie vitata della provincia di Modena é per circa il 70% interessata dai Lambruschi, famiglia di vitigni tipica dei territori pianeggianti emiliani. Tra questi, i più rappresentativi sono il Lambrusco di Sorbara, il Lambrusco salamino e il Lambrusco grasparossa che, unico esempio, predilige gli ambienti collinari della provincia. Nel quinquennio 2001-2005 la Provincia di Modena ed il C.R.P.V. hanno coordinato la zonazione viticola di tutto il territorio dei Lambruschi modenesi, i cui risultati hanno consentito di individuare, in ciascuna zona D.O.C., alcune Terre in cui cias

The Lambruschi family, which is typical of the Emilia planes, covers some 70% of the viticultural area of Modena province. Within the Lambruschi family, Lambrusco di Sorbara, Lambrusco Salamino and Lambrusco Grasparossa are the most representative varieties and the latter, unic example, prefers the hilly areas of the province. In the 2001-2005 period, the Province of Modena and the C.R.P.V. have coordinated the zoning of the whole territory of Modena lambrusco cultivars whose findings identified in each DOC area some “Terre” in which each variety can give a product with recognizable qualitative and sensorial characteristics.

DOI:

Publication date: November 24, 2021

Issue: Terroir 2010

Type: Article

Authors

Zamboni M. (1), Nigro G. (2), Scotti C. (3), Raimondi S. (3), Melotti M. (4), Simoni M. (4)

(1) Università Cattolica del Sacro Cuore.; Via Emilia Parmense, 84 – 29122 Piacenza – Italia
(2) C.R.P.V. Filiera Vitivinicola e Olivicola; Via Tebano, 54 – Faenza (RA) – Italia
(3) I.TER Soc. coop.; Via Brugnoli, 11 – 40122 Bologna – Italia
(4) ASTRA Innovazione e Sviluppo s.r.l. – 48018 Faenza (RA) – Italia

Contact the author

Keywords

Vite, terroir, suolo, qualità del vino
Grapevine, terroir, soil, wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

A survey on the rotundone content of 18 grape varieties sourced from a germplasm 

Rotundone, the pepper aroma compound, has been detected in wines made from a large number of grape varieties. However, given the fact that analyzed wines were sourced from different winegrowing regions and seasons, made using different winemaking techniques and at different scales, it remains difficult to assess the real variety potential to produce rotundone.

Effects of Silver Thiosulphate and Salicylic Acid on the long-term maintenance of the embryogenic callus of Vitis vinifera

New Plant Breeding Techniques (NPBTs) have the potential to revolutionize the genetic improvement of grapevine. However, the practical application of these techniques is limited by several challenges, such as the difficulty in generating embryogenic calluses, maintaining their competence during in vitro cultivation, and regenerating plants without defects. To overcome these challenges, we conducted a study to test the effect of two treatments on callus cultures derived from different grapevine varieties, with and without embryogenic competence. The tested substances were Silver Thiosulphate (STS) an ethylene inhibitor, and Salicylic Acid (SA), an elicitor with different effects depending on the concentration of use beyond the ethylene inhibitor activity.

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.