Terroir 2010 banner
IVES 9 IVES Conference Series 9 Le terre dei Lambruschi modenesi

Le terre dei Lambruschi modenesi

Abstract

[English version below]

La superficie vitata della provincia di Modena é per circa il 70% interessata dai Lambruschi, famiglia di vitigni tipica dei territori pianeggianti emiliani. Tra questi, i più rappresentativi sono il Lambrusco di Sorbara, il Lambrusco salamino e il Lambrusco grasparossa che, unico esempio, predilige gli ambienti collinari della provincia. Nel quinquennio 2001-2005 la Provincia di Modena ed il C.R.P.V. hanno coordinato la zonazione viticola di tutto il territorio dei Lambruschi modenesi, i cui risultati hanno consentito di individuare, in ciascuna zona D.O.C., alcune Terre in cui cias

The Lambruschi family, which is typical of the Emilia planes, covers some 70% of the viticultural area of Modena province. Within the Lambruschi family, Lambrusco di Sorbara, Lambrusco Salamino and Lambrusco Grasparossa are the most representative varieties and the latter, unic example, prefers the hilly areas of the province. In the 2001-2005 period, the Province of Modena and the C.R.P.V. have coordinated the zoning of the whole territory of Modena lambrusco cultivars whose findings identified in each DOC area some “Terre” in which each variety can give a product with recognizable qualitative and sensorial characteristics.

DOI:

Publication date: November 24, 2021

Issue: Terroir 2010

Type: Article

Authors

Zamboni M. (1), Nigro G. (2), Scotti C. (3), Raimondi S. (3), Melotti M. (4), Simoni M. (4)

(1) Università Cattolica del Sacro Cuore.; Via Emilia Parmense, 84 – 29122 Piacenza – Italia
(2) C.R.P.V. Filiera Vitivinicola e Olivicola; Via Tebano, 54 – Faenza (RA) – Italia
(3) I.TER Soc. coop.; Via Brugnoli, 11 – 40122 Bologna – Italia
(4) ASTRA Innovazione e Sviluppo s.r.l. – 48018 Faenza (RA) – Italia

Contact the author

Keywords

Vite, terroir, suolo, qualità del vino
Grapevine, terroir, soil, wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Botrytis cinerea causes grey mold that results in severe problems for wine makers worldwide. Infected grapes lead to quality deterioration including formation of off-flavors or browning. The latter is caused by the enzyme laccase which is capable of oxidizing a wide range of phenolic compounds. Since the use of conventional pesticides is associated with many concerns of consumers and authorities regarding environmental and health related issues and may result in fungicide resistance, the development of green alternatives is gaining more attention.

Eliminating Brettanomyces and lactic acid bacteria in wine: the potential of Ultra-High Pressure Homogenization (UHPH)

Ultra-High Pressure Homogenization (UHPH) is an innovative technology that can be seamlessly integrated at various stages of winemaking. Its application helps minimize or even eliminate the need for sulphites and other antimicrobial or antioxidant treatments, offering a faster and more sustainable alternative.