Terroir 2010 banner
IVES 9 IVES Conference Series 9 Le terre dei Lambruschi modenesi

Le terre dei Lambruschi modenesi

Abstract

[English version below]

La superficie vitata della provincia di Modena é per circa il 70% interessata dai Lambruschi, famiglia di vitigni tipica dei territori pianeggianti emiliani. Tra questi, i più rappresentativi sono il Lambrusco di Sorbara, il Lambrusco salamino e il Lambrusco grasparossa che, unico esempio, predilige gli ambienti collinari della provincia. Nel quinquennio 2001-2005 la Provincia di Modena ed il C.R.P.V. hanno coordinato la zonazione viticola di tutto il territorio dei Lambruschi modenesi, i cui risultati hanno consentito di individuare, in ciascuna zona D.O.C., alcune Terre in cui cias

The Lambruschi family, which is typical of the Emilia planes, covers some 70% of the viticultural area of Modena province. Within the Lambruschi family, Lambrusco di Sorbara, Lambrusco Salamino and Lambrusco Grasparossa are the most representative varieties and the latter, unic example, prefers the hilly areas of the province. In the 2001-2005 period, the Province of Modena and the C.R.P.V. have coordinated the zoning of the whole territory of Modena lambrusco cultivars whose findings identified in each DOC area some “Terre” in which each variety can give a product with recognizable qualitative and sensorial characteristics.

DOI:

Publication date: November 24, 2021

Issue: Terroir 2010

Type: Article

Authors

Zamboni M. (1), Nigro G. (2), Scotti C. (3), Raimondi S. (3), Melotti M. (4), Simoni M. (4)

(1) Università Cattolica del Sacro Cuore.; Via Emilia Parmense, 84 – 29122 Piacenza – Italia
(2) C.R.P.V. Filiera Vitivinicola e Olivicola; Via Tebano, 54 – Faenza (RA) – Italia
(3) I.TER Soc. coop.; Via Brugnoli, 11 – 40122 Bologna – Italia
(4) ASTRA Innovazione e Sviluppo s.r.l. – 48018 Faenza (RA) – Italia

Contact the author

Keywords

Vite, terroir, suolo, qualità del vino
Grapevine, terroir, soil, wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).

New satellite-based sampling protocols for grapevine nutrient monitoring

Extension specialists often recommend nutrient monitoring through leaf blade or petiole sampling twice a season for each vineyard block. However, due to the time and labor required to collect a large, random sample, many growers complete the task infrequently or incorrectly. Readily available remote sensing images capture the vineyard variability at both spatial and temporal scales, which can capture canopy and soil variability and be used to guide growers to representative sampling locations.