Terroir 2010 banner
IVES 9 IVES Conference Series 9 Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

Abstract

[English version below]

La Géorgie est un pays d’une tradition très ancienne de viticulture et de viniculture. Là, dans les micro zones spécifiques, en précisant le lieu on produit de différents types du vin d’une histoire de plusieurs siècles, distingués par leurs caractéristiques, portant des signes originaux (vins de table sec, demi-sec, demi-sucré, mousseux, Kakhétien, Imérétien). Leur production est favorisée par l’unité des tels phénomènes associés entre elles harmonieusement comme l’espèce, le terroir, le climat et les technologies.

Georgia is one of the oldest viticulture and oenology country, where in Terroir regions is produced long secular history, qualitative different, original dispirited (table dry, semi-dry, semi-sweet, sparkling, Khatetian, Imeruli) wine. Producing such kind of wines is encouraged by harmonic confluence of species, soil, climatic and technological (making in Qvevri) and totality of phenomenon.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Mirvelashvili M., Kobaidzé T., Maghradzé D.

Institut de recherches d’horticulture, de viticulture et d’oenologie
6, avenue Maréchal Guélovani, 0159, Tbilissi, Géorgie

Keywords

Le vin Kakhétien, le vin Imérétien, Kvevri (la cuve)
Kakhetian Wine, Imerelian Wine, Qvevri (Pitcher)

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Chenin Blanc Old Vine character: evaluating a typicality concept by data mining experts’ reviews and producers’ tasting notes

Concepts such as typicality are difficult to demonstrate using the limited set of samples that can be subjected to sensory evaluation. This is due both to the complexity of the concept and to the limitations of traditional sensory evaluation (number of samples per session, panel fatigue, the need for multiple sessions and methods, etc.). On the other hand, there is a large amount of data already available, accumulated through many years of consistent evaluation. These data are held in repositories (such as Platter’s Wine Guide in the case of South Africa Wine, wineonaplatter.com) and in technical notes provided by the producers.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen status. Depending on the color of the grapes (red or white) and the type of wine produced, the desired level of vine water and nitrogen status for optimum wine quality is different. Little investigation has been carried out concerning these factors and their potential influence on sparkling wine quality on two vintages. In this study vine water and nitrogen status were assessed at a very high density and related to grape composition and berry weight. Through statistical analyses, the major factors driving grape quality potential on Pinot noir in Champagne were highlighted.

Analyse de la perception du terroir et de sa valorisation par les viticulteurs de l’Anjou

An integrated terroir characterization is currently realized in the French northern vineyard: “Anjou”. The concept of Basic Terroir Unit (B.T.U.) and its associated ground model “Rock, Alteration, Alterite” are used in this characterization. This work is coupled to a viticultural survey, based on parcels.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.