Terroir 2010 banner
IVES 9 IVES Conference Series 9 Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

Abstract

[English version below]

La Géorgie est un pays d’une tradition très ancienne de viticulture et de viniculture. Là, dans les micro zones spécifiques, en précisant le lieu on produit de différents types du vin d’une histoire de plusieurs siècles, distingués par leurs caractéristiques, portant des signes originaux (vins de table sec, demi-sec, demi-sucré, mousseux, Kakhétien, Imérétien). Leur production est favorisée par l’unité des tels phénomènes associés entre elles harmonieusement comme l’espèce, le terroir, le climat et les technologies.

Georgia is one of the oldest viticulture and oenology country, where in Terroir regions is produced long secular history, qualitative different, original dispirited (table dry, semi-dry, semi-sweet, sparkling, Khatetian, Imeruli) wine. Producing such kind of wines is encouraged by harmonic confluence of species, soil, climatic and technological (making in Qvevri) and totality of phenomenon.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Mirvelashvili M., Kobaidzé T., Maghradzé D.

Institut de recherches d’horticulture, de viticulture et d’oenologie
6, avenue Maréchal Guélovani, 0159, Tbilissi, Géorgie

Keywords

Le vin Kakhétien, le vin Imérétien, Kvevri (la cuve)
Kakhetian Wine, Imerelian Wine, Qvevri (Pitcher)

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Importance des propriétés optiques de la surface du sol sur le microclimat de la vigne. Répercussions de l’usage d’un revêtement de sol réfléchissant sur la composition des moûts et sur la qualité du vin

Cette recherche a eu pour but l’étude des effets d’un renforcement radiatif et thermique sur les zones inférieures de la canopée de la vigne (solarisation par des films ou des paillages réfléchissants installés sur le sol, sous les ceps), notamment l’étude de leurs conséquences sur la composition biochimique des moûts à la vendange et sur la qualité des vins.

Treated wastewater irrigation: how to manage water salinity without reducing its nutrients content?

Nutrients in municipal treated wastewater (N, P, K, mainly) are a particular advantage in this source over conventional irrigation water sources

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.

Defining gene regulation and co-regulation at single cell resolution in grapevine

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect.