Terroir 2010 banner
IVES 9 IVES Conference Series 9 Terroir characterization from cv. Merlot and Sauvignon plots follow-up within the scope of wine-production : “Vins de Pays Charentais” in the Cognac eaux-de-vie vineyard area

Terroir characterization from cv. Merlot and Sauvignon plots follow-up within the scope of wine-production : “Vins de Pays Charentais” in the Cognac eaux-de-vie vineyard area

Abstract

[English version below]

Dans les études des terroirs, il est souvent délicat d’établir des zonages et de mesurer les effets de l’environnement sur les vins. Avec plus d’un million d’hectares dans l’aire d’appellation délimitée, le terroir du célèbre vignoble de Cognac est bien connu pour ces eaux-de-vie et ainsi divisé en 6 crus.
Cette étude vise à décrire le terroir des Vins de Pays Charentais (VPC) produits dans le vignoble Cognaçais. Les principaux cépages spécifiquement destinés à la production de VPC (Merlot et Sauvignon blanc) ont été étudiés en collectant de nombreuses données sur 5 millésimes et 35 parcelles représentant la diversité agro-pédo-climatique de la région. Comme souvent dans les essais au champ les expérimentateurs ont été confrontés à de multiples facteurs croisés et de nombreux paramètres ont été suivis. A ce stade, peu de données climatiques ont été introduites et les données de dégustation n’ont pas été incluses.
Une expertise préliminaire a permis de sélectionner certaines variables, classées en 4 groupes distincts : données climatiques et pédologiques, matériel végétal, phénologie et vinification.
L’analyse statistique exploratoire a fait ressortir certaines variables influentes, par exemple l’ère géologique et le type de sol, qui distinguent des unités cohérentes d’un point de vue géographique notamment les îles de Ré et d’Oléron. Le comportement des vignes VPC est ensuite étudié sur chacune de ces unités afin de définir ces terroirs viticoles.
Les groupes de parcelles destinées à la production de vin semblent concorder pour une bonne part aux crus des eaux de vie de Cognac même si le cépage et le type de produit diffèrent. Ces résultats vont permettre de réfléchir sur différents moyens d’optimiser l’effet terroir par les pratiques des producteurs de VPC sur les différents terroirs.

Zoning and understanding the effects of the environment expressed in vine products has always been a difficult work to start off with terroir. Thus, with more than one million hectares in the delimited appellation area, the famous Cognac vineyard terroir is well-known for eaux-de-vie and divided in 6 vintages areas since the beginning of the 20th century.
This project aims at describing the terroir for wines named “Vins de Pays Charentais” (VPC) produced in the Cognac vineyard. Main cultivars specifically used to produce VPC (Merlot and Sauvignon Blanc) were studied by collecting a set of data, using 6 years and 35 plots to represent the diversity of environmental and cultural situations in the area. As often in field trials, experimenters were confronted with many crossed factors and numerous variables were measured. At this stage, only few climatic data is available. A preliminary expertise allowed to choose some of the variables sorted in 4 distinctive groups : soil and climate data, plant material, vine cycle and grapes and then wine-making process. Tasting data was not taken into account regarding as its robustness.
The statistical exploratory analysis brought out some influential variables, as for example geological era and soil type, that clearly segregate coherent geographic units, notably Ré and Oléron islands which are breaking away. From then on, to define various “wine-terroirs” these clusters should each correspond to consistent VPC grapevine behavior and wines.
Most climatic data still has to be crossed with the plots groups sorted, but the clusters of wine producing plots already appears to tally, at least partly, Cognac firewater vineyards classification even if cultivars and type of product differ. These results allow to consider various means to optimize terroir effect by VPC winegrowers’ practices on each plot, depending on its cluster.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

BERNARD F.M. (1), PREYS S. (2), GIRARD M. (3) & MORNET L. (4)

(1) IFV, Institut Français de la Vigne et du vin, 15 Rue Pierre Viala, 16130, Segonzac, France
(2) Ondalys, 385 Avenue des Baronnes, 34730, Prades-Le-Lez, France
(3) Chambre d’Agriculture de Charente-Maritime, 3 Boulevard Vladimir, 17100, Saintes, France
(4) Chambre d’Agriculture de Charente, 25 Rue de Cagouillet, 16100, Cognac, France

Contact the author

Keywords

Vins de Pays Charentais, Merlot, Sauvignon, Terroir viticole, Sol, Millésime
Vins de Pays Charentais, Merlot, Sauvignon, Wine-terroir, Soil, Vintage

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effect of one-year cover crop and arbuscular mycorrhiza inocululation in the microbial soil community of a vineyard

The microbial composition of the soil is an important factor to consider in viticulture, since its influence on the “terroir” and on the organoleptic properties of the wine have been demonstrated. Different agronomic techniques have the potential to modify the composition and functionality of the soil microbial community. Maintaining green covers is known to increase soil microbial diversity. The direct application of inoculum of beneficial microorganisms to the soil has also been used to increase their abundance. However, the environmental conditions of each site seem to have a determining weight in the result of these practices. In this study, we compared the effect on the microbial community of a cover crop with legumes in autumn and the inoculation of grapevines with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseae in the previous spring. The study has been carried out in a vineyard in Binissalem, Mallorca, Spain. After applying the treatments, we will analyze the soil microbial communities using the data obtained from Illumina amplification of soil DNA from the 16S and ITS regions to analyze bacteria and fungi community, respectively. In addition, we will record the physicochemical characteristics of the soil at each sampling point. The result showed that agronomic management, in the short term, has less influence than soil characteristics on the composition of the soil microbiome. With these results, we can conclude that in a vineyard, agricultural techniques should focus on improving the characteristics of the soil to improve the biodiversity of the soil microbiota.

Climate, grapes, and wine: structure and suitability in a variable and changing climate

Climate is a pervasive factor in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality

Berry shrivel causes – summarizing current hypotheses

Diverse ripening disorders affect grapevine resulting in high economic losses worldwide. The common obvious symptom is shriveling berries, however the shriveling pattern and the consequences for berry quality traits are distinct in each disorder. Among them, the disorder berry shrivel is characterized by a reduced sugar accumulation short after the onset of berry ripening leaving the clusters unsuitable for wine processing. Although our knowledge on BS increased recently, potential internal or external triggers contributing to the induction of BS are yet to be explored.

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.