Terroir 2010 banner
IVES 9 IVES Conference Series 9 The importance of landscape in wine quality perception: l’importanza del paesaggio nella percezione qualitativa del vino

The importance of landscape in wine quality perception: l’importanza del paesaggio nella percezione qualitativa del vino

Abstract

The wine quality is a characteristic that is both difficult to define and communicate, because the quality attributes can be divided into intrinsic (objective, such as alcohol degree, acidity, colour, grape variety etc.) and hedonistic components (extrinsic) that is based upon a subjective evaluation. That means that the attributes that signal quality to consumers are not always objective, but also extrinsic, which impact on wine preference and is a study in progress. The wine area production seems to be a very important variable influencing consumers’ judgement, because it reflects the wine origin, its quality, its traceability (as variety, climate, soil morphology, wine law assessment). The landscape is an important component of the wine origin and it summarises several wine attributes: e.g. climate and soil for grape quality, the local history and the grape production traditions. The mountain viticulture landscape is also an expression of handwork and authenticity. With the aim to quantify the importance of landscape and frame of mind in wine quality perception and how much they can influence consumers’ decision to purchase wine, using a new statistical test, Choice-Based Conjoint AnalysisCBCA, we have evaluate the relevance of the attribute landscape at four different levels. The results pointed out a direct relation that tie a well conserved and scenographic landscape with the wine quality perception and confirm that landscape is an important factor of the extrinsic wine quality.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Tomasi (1), F. Gaiotti (1), T. Tempesta (2) 

(1) CRA – Centro di Ricerca per la Viticoltura, via XXVIII Aprile, 26 – 31015 Conegliano (TV) – Italia
(2) Università degli Studi di Padova – Via 8 Febbraio, 2 – 35122 Padova – Italia

Contact the author

Keywords

viticulture, landscape, wine quality perception

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Polysaccharides and glycerol production by non-Saccharomyces wine yeasts in mixed fermentation

A great variability in the amount of polysaccharides recovered at the end of fermentations carried out by pure cultures of 89 non-Saccharomyces yeasts was observed. The utilization of the best polysaccharides producers in mixed cultures with S. cerevisiae resulted in considerable increases in the final concentration of polysaccharides and showed a strain dependent effect on glycerol production as compared to pure culture of S. cerevisiae.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

Chromatic characteristics of Nermantis and Termantis wines from traditional and withered grapes

The work aims to characterise the colour features of the wines of two new resistant varieties breeeded at the Edmund Mach Foundation (Italy) and recently inscribed in the Italian National Registriy of Vine Varieties.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.