Terroir 2010 banner
IVES 9 IVES Conference Series 9 The importance of landscape in wine quality perception: l’importanza del paesaggio nella percezione qualitativa del vino

The importance of landscape in wine quality perception: l’importanza del paesaggio nella percezione qualitativa del vino

Abstract

The wine quality is a characteristic that is both difficult to define and communicate, because the quality attributes can be divided into intrinsic (objective, such as alcohol degree, acidity, colour, grape variety etc.) and hedonistic components (extrinsic) that is based upon a subjective evaluation. That means that the attributes that signal quality to consumers are not always objective, but also extrinsic, which impact on wine preference and is a study in progress. The wine area production seems to be a very important variable influencing consumers’ judgement, because it reflects the wine origin, its quality, its traceability (as variety, climate, soil morphology, wine law assessment). The landscape is an important component of the wine origin and it summarises several wine attributes: e.g. climate and soil for grape quality, the local history and the grape production traditions. The mountain viticulture landscape is also an expression of handwork and authenticity. With the aim to quantify the importance of landscape and frame of mind in wine quality perception and how much they can influence consumers’ decision to purchase wine, using a new statistical test, Choice-Based Conjoint AnalysisCBCA, we have evaluate the relevance of the attribute landscape at four different levels. The results pointed out a direct relation that tie a well conserved and scenographic landscape with the wine quality perception and confirm that landscape is an important factor of the extrinsic wine quality.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Tomasi (1), F. Gaiotti (1), T. Tempesta (2) 

(1) CRA – Centro di Ricerca per la Viticoltura, via XXVIII Aprile, 26 – 31015 Conegliano (TV) – Italia
(2) Università degli Studi di Padova – Via 8 Febbraio, 2 – 35122 Padova – Italia

Contact the author

Keywords

viticulture, landscape, wine quality perception

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Valorization of wine lees for oenological interest by eco-responsible processes

Wine lees are the second most important wine by-product in terms of quantity after grape stalk and marc. During aging on lees, it is well known that wine lees yield compounds that act as antioxydant. However the chemical nature of the compounds involved in this behavior (except polyphenols and glutathione) has not yet been totally elucidated. The scarce knowledge of wine lees composition and their potential exploitation make them a promising candidate to obtain new antioxidant products to be used in winemaking. In this study, an eco-sustainable approach to obtain lees extracts exhibiting antioxidant capacity is proposed. Such extracts could be used in a global enological strategy of sulfites level reduction.

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards. 

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.