Terroir 2010 banner
IVES 9 IVES Conference Series 9 Vineyard management for environment valorisation

Vineyard management for environment valorisation

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.J Hunter (1), E. Archer (2), C.G. Volschenk (3)

(1)(3) ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, South Africa
(2) Lusan Premium Wines, PO Box 104, Stellebosch, South Africa

Contact the author

Keywords

Environment, terroir, rootstock/scion, spacing, trellising, row orientation, ripening

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales.

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

Identification of QTLS for sunburn resilience in grapevine berries

Context and purpose of the study – Grape sunburn is an abiotic stress response triggered by high temperatures.