Terroir 2010 banner
IVES 9 IVES Conference Series 9 Vineyard management for environment valorisation

Vineyard management for environment valorisation

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.J Hunter (1), E. Archer (2), C.G. Volschenk (3)

(1)(3) ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, South Africa
(2) Lusan Premium Wines, PO Box 104, Stellebosch, South Africa

Contact the author

Keywords

Environment, terroir, rootstock/scion, spacing, trellising, row orientation, ripening

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels (unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Identifying New Zealand Sauvignon blanc terroirs

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Mouthfeel effects due to oligosaccharides within a wine matrix

The mouthfeel of wine is one of the most important aspects of the organoleptic experience of tasting wine. In wine a great deal is known about certain compositional components and how they impact mouthfeel perception, such as phenolics. But there are other components where little is understood, such as oligosaccharides. Saccharides in general are found in very low concentrations with wine, especially compared to conventional foods. There is very little information about how oligosaccharides influence the mouthfeel perception of wine.

Big data analysis of pesticides from the vine to the winery

Of biocontrol products and resistant grape varieties, synthetic pesticides are still widely used to control fungal diseases and protect vines from potential damage caused by pests. The use of pesticides is strictly regulated, and their use can sometimes lead to transfer from the grapes to the must and then into the wine. The study of pesticide residues in grapes and wines is commonly carried out by wine producers in order, among other things, to optimize treatment routes, check that products comply with regulations, and ultimately guarantee the food safety of the wine.