Terroir 2010 banner
IVES 9 IVES Conference Series 9 Changing the scale of characterization of a wine area: from a single protected designation of origin to a vineyard Loire Valley observatory (viLVO)

Changing the scale of characterization of a wine area: from a single protected designation of origin to a vineyard Loire Valley observatory (viLVO)

Abstract

Terroir is increasingly important today in wine markets. In a large wine production area such as the Loire Valley, the whole territories/terroirs can be distinguished according to different combinations of geological, soil, climatic and landscape features but are also characterized by their differences and likenesses in terms of combinations of terroir units and practices.
The objective of the study is to obtain a systemic analysis of the typicality of wines conferred by the terroir in a large territory and identify which practices are associated with the production of typical wines in a given territory or a specific area of wine production.
In a previous work, a method was designed to identify some viticultural and enological practices that allow distinguishing wines at the scale of a PDO (Protected Designation of Origin1), in a small territory. The new challenge is to extend the method to the different sub-basins of the Loire Valley, and to check if the same results can be obtained for other types of wines. The extension of our method to study the practices of the winegrowers requires some adaptations before it may be applied on a larger scale as in a Vineyard Loire Valley Observatory. The choice of the strategy was to combine a small scale diagnosis with a participatory method with Research Development and Extension (RDE) officers to answer our questions and organize ViLVO.
We were thus able (i) to solve some problems such as the working organization of ViLVO users and databases property, (ii) to combine RDE officers and searchers goals around the identification of significant practices associated with wine quality and fame and (iii) to focus on outstanding practices involved in terroir typicality of Loire Valley wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Thiollet-Scholtus (1), M. Badier (2), G. Barbeau (1)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) Chambre d’Agriculture 41 Rue Gutemberg ZA 41140 Noyers sur Cher, France

Contact the author

Keywords

Practices, vineyard, scale, observatory, participatory method

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Exploring the behavior of alternatives to montmorillonite clays in white wine protein stabilization

Visual clarity in wines is crucial for commercial purposes [1]. Potential protein haze in white wines remains a constant concern in wineries, commonly addressed using bentonite [2].

Vineyards and grape varieties: what is going on in wine professional and consumer minds?

Vineyard and grape variety are two popular ways of classifying wines. Vineyard designation is a traditional practice for European wine labels but is being increasingly replaced by grape variety designation, mainly used for New World and Swiss wine labels.

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.