Terroir 2010 banner
IVES 9 IVES Conference Series 9 Changing the scale of characterization of a wine area: from a single protected designation of origin to a vineyard Loire Valley observatory (viLVO)

Changing the scale of characterization of a wine area: from a single protected designation of origin to a vineyard Loire Valley observatory (viLVO)

Abstract

Terroir is increasingly important today in wine markets. In a large wine production area such as the Loire Valley, the whole territories/terroirs can be distinguished according to different combinations of geological, soil, climatic and landscape features but are also characterized by their differences and likenesses in terms of combinations of terroir units and practices.
The objective of the study is to obtain a systemic analysis of the typicality of wines conferred by the terroir in a large territory and identify which practices are associated with the production of typical wines in a given territory or a specific area of wine production.
In a previous work, a method was designed to identify some viticultural and enological practices that allow distinguishing wines at the scale of a PDO (Protected Designation of Origin1), in a small territory. The new challenge is to extend the method to the different sub-basins of the Loire Valley, and to check if the same results can be obtained for other types of wines. The extension of our method to study the practices of the winegrowers requires some adaptations before it may be applied on a larger scale as in a Vineyard Loire Valley Observatory. The choice of the strategy was to combine a small scale diagnosis with a participatory method with Research Development and Extension (RDE) officers to answer our questions and organize ViLVO.
We were thus able (i) to solve some problems such as the working organization of ViLVO users and databases property, (ii) to combine RDE officers and searchers goals around the identification of significant practices associated with wine quality and fame and (iii) to focus on outstanding practices involved in terroir typicality of Loire Valley wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Thiollet-Scholtus (1), M. Badier (2), G. Barbeau (1)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) Chambre d’Agriculture 41 Rue Gutemberg ZA 41140 Noyers sur Cher, France

Contact the author

Keywords

Practices, vineyard, scale, observatory, participatory method

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

A multivariate clustering approach for a gis based territorial characterization of the montepulciano d’abruzzo DOCG “Colline Teramane”

The aim of the project was to characterize the Premium Denomination of Guaranteed Origin (DOCG) “Colline Teramane” wine-growing region and to delineate and define homogeneous zones (terroir units) within it, by applying a multivariate clustering approach combined with geomatics.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining.

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

The effect of short and long-term water deficit on physiological performance and leaf microbiome of different rootstock and scion combinations

Climate change, particularly drought stress, threatens viticulture sustainability. Understanding scion-rootstock interactions and their link to the grapevine microbiome is key to improving vine health, productivity, and drought resilience.