Terroir 2010 banner
IVES 9 IVES Conference Series 9 Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Abstract

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness of this technique under the semi-arid climatic conditions of the Utiel- Requena D. O. (Valencia, south-east Spain) with the cv. Tempranillo. In deficit drip irrigated vines, planted in north- south oriented rows with vertical shoot positioning, four treatments were applied during 2008 and 2009. Control (C), non-defoliated vines, were compared with defoliation performed either just before anthesis (phenological stage H, treatment ED), or at fruit set (phenological stage J, treatment LD). In both defoliation treatments leaves from the first 6 nodes, including laterals, were removed. In a fourth treatment, only the leaves facing east from the first 8 nodes were removed at phenological stage H (EED). Sixteen vines per treatment were randomly selected within the vineyard. In the first season, as an average for all defoliation treatments yield was reduced 21 % by leaf pulling. In the second season, there was a heavier reduction in yield (41 %). Flower and berry number per cluster were similar in 2008, but in 2009 flower number decreased for ED, and berry number for ED and LD. In both years, lower berry weights at harvest were obtained in all defoliation treatments. Fruit composition was also modified by early-defoliation. For grapes harvested at the same date, treatment LD increased sugar content in 2009.The malic acid concentration decreased for all defoliation treatments in 2008, and the tartaric acid levels increased for all defoliation treatments in both years. Total acidity decreased for ED and LD in both years, though significantly only in 2008, when it decreased in proportion to the intensity of defoliation. Both ED, and particularly LD, improved berry composition, increasing the concentration of total phenolics, anthocyanins and tannins. The synthesis of phenolic substances was instead not increased by leaf pulling. Overall results indicate that defoliation carried out at fruit set is the most effective treatment to improve berry phenolic concentration and soluble solids. However, growers should take into account the important yield penalty due to defoliation, particularly in the mid-term. In addition, a decrease in malic acid concentration could be also detrimental during wine-making. This indicates that the early defoliation technique needs to be used with caution in the semi-arid and warm terroirs.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Risco, D. Pérez, A. Yeves, J.R. Castel, D.S. Intrigliolo

I.V.I.A. Ctra. Moncada-Naquera km.4.5. 46113. Moncada, Valencia, Spain

Contact the author

Keywords

Fruit set, yield, total soluble solids, malic acid, phenolics

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

The use of viticultural and oenological performance of grapevines to identify terroirs: the example of Sauvignon blanc in Stellenbosch

Identification and characterisation of terroirs depends on knowledge of environmental parameters, functioning of the grapevine and characteristics of the final product. A network of plots of Sauvignon blanc was delimited in commercial vineyards in proximity to weather stations at 20 localities and their viticultural and oenological response was monitored for a period of seven years. These experimental plots were further characterised with respect to climate, soil and topography.

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.