Terroir 2010 banner
IVES 9 IVES Conference Series 9 Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Abstract

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness of this technique under the semi-arid climatic conditions of the Utiel- Requena D. O. (Valencia, south-east Spain) with the cv. Tempranillo. In deficit drip irrigated vines, planted in north- south oriented rows with vertical shoot positioning, four treatments were applied during 2008 and 2009. Control (C), non-defoliated vines, were compared with defoliation performed either just before anthesis (phenological stage H, treatment ED), or at fruit set (phenological stage J, treatment LD). In both defoliation treatments leaves from the first 6 nodes, including laterals, were removed. In a fourth treatment, only the leaves facing east from the first 8 nodes were removed at phenological stage H (EED). Sixteen vines per treatment were randomly selected within the vineyard. In the first season, as an average for all defoliation treatments yield was reduced 21 % by leaf pulling. In the second season, there was a heavier reduction in yield (41 %). Flower and berry number per cluster were similar in 2008, but in 2009 flower number decreased for ED, and berry number for ED and LD. In both years, lower berry weights at harvest were obtained in all defoliation treatments. Fruit composition was also modified by early-defoliation. For grapes harvested at the same date, treatment LD increased sugar content in 2009.The malic acid concentration decreased for all defoliation treatments in 2008, and the tartaric acid levels increased for all defoliation treatments in both years. Total acidity decreased for ED and LD in both years, though significantly only in 2008, when it decreased in proportion to the intensity of defoliation. Both ED, and particularly LD, improved berry composition, increasing the concentration of total phenolics, anthocyanins and tannins. The synthesis of phenolic substances was instead not increased by leaf pulling. Overall results indicate that defoliation carried out at fruit set is the most effective treatment to improve berry phenolic concentration and soluble solids. However, growers should take into account the important yield penalty due to defoliation, particularly in the mid-term. In addition, a decrease in malic acid concentration could be also detrimental during wine-making. This indicates that the early defoliation technique needs to be used with caution in the semi-arid and warm terroirs.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Risco, D. Pérez, A. Yeves, J.R. Castel, D.S. Intrigliolo

I.V.I.A. Ctra. Moncada-Naquera km.4.5. 46113. Moncada, Valencia, Spain

Contact the author

Keywords

Fruit set, yield, total soluble solids, malic acid, phenolics

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Exploring induced mutagenesis as a tool for grapevine intra-varietal improvement: increased diversity in ripening periods and bunch traits with climate resilience potential

The wine industry currently relies on a limited number of grapevine cultivars, comprised of numerous clones with slight differences in their viticultural, oenological, or stress-tolerance traits.

Evaluation of the enological potential of red grapes in southern Brazil

The Campanha Gaúcha is located in the pampa biome and has unique characteristics, as it is the hottest producing region with the lowest volume of rain in Southern Brazil. Furthermore, the large extensions of flat or low-sloping areas, harsh winters and great sunshine during the ripening period, made this the second largest producer of fine wines in Brazil.

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin.

Dissecting the dual role of light regarding the plasticity of grape physiology and gene regulation through daylength simulation in a semi-arid region

Context and purpose of the study. Daylength is a key climatic factor within the terroir concept. However, the complex interplay of multiple variables in regions with varying daylengths makes it challenging to isolate and investigate this specific factor.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.