Terroir 2010 banner
IVES 9 IVES Conference Series 9 Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Abstract

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness of this technique under the semi-arid climatic conditions of the Utiel- Requena D. O. (Valencia, south-east Spain) with the cv. Tempranillo. In deficit drip irrigated vines, planted in north- south oriented rows with vertical shoot positioning, four treatments were applied during 2008 and 2009. Control (C), non-defoliated vines, were compared with defoliation performed either just before anthesis (phenological stage H, treatment ED), or at fruit set (phenological stage J, treatment LD). In both defoliation treatments leaves from the first 6 nodes, including laterals, were removed. In a fourth treatment, only the leaves facing east from the first 8 nodes were removed at phenological stage H (EED). Sixteen vines per treatment were randomly selected within the vineyard. In the first season, as an average for all defoliation treatments yield was reduced 21 % by leaf pulling. In the second season, there was a heavier reduction in yield (41 %). Flower and berry number per cluster were similar in 2008, but in 2009 flower number decreased for ED, and berry number for ED and LD. In both years, lower berry weights at harvest were obtained in all defoliation treatments. Fruit composition was also modified by early-defoliation. For grapes harvested at the same date, treatment LD increased sugar content in 2009.The malic acid concentration decreased for all defoliation treatments in 2008, and the tartaric acid levels increased for all defoliation treatments in both years. Total acidity decreased for ED and LD in both years, though significantly only in 2008, when it decreased in proportion to the intensity of defoliation. Both ED, and particularly LD, improved berry composition, increasing the concentration of total phenolics, anthocyanins and tannins. The synthesis of phenolic substances was instead not increased by leaf pulling. Overall results indicate that defoliation carried out at fruit set is the most effective treatment to improve berry phenolic concentration and soluble solids. However, growers should take into account the important yield penalty due to defoliation, particularly in the mid-term. In addition, a decrease in malic acid concentration could be also detrimental during wine-making. This indicates that the early defoliation technique needs to be used with caution in the semi-arid and warm terroirs.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Risco, D. Pérez, A. Yeves, J.R. Castel, D.S. Intrigliolo

I.V.I.A. Ctra. Moncada-Naquera km.4.5. 46113. Moncada, Valencia, Spain

Contact the author

Keywords

Fruit set, yield, total soluble solids, malic acid, phenolics

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

L’étude “terroirs d’Anjou”: un exemple de caractérisation intégrée des terroirs viticoles, utilisable à l’échelle parcellaire

Natural factors of the production (“terroir” and vintage) are known as an important element for identifying wines by their genuine typicité and their authenticity. The program “Terroirs d’Anjou” (1994-1999) aims at bringing the necessary scientific basis for a rational and reasoned exploitation of the terroir.

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).

Managing local field variability in the framework of precision viticulture

Managing grapevines according to the practices of Precision Agriculture (PA), may prove to be an asset in the hands of the modern grape growers.

Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Botrytis cinerea causes grey mold that results in severe problems for wine makers worldwide. Infected grapes lead to quality deterioration including formation of off-flavors or browning. The latter is caused by the enzyme laccase which is capable of oxidizing a wide range of phenolic compounds. Since the use of conventional pesticides is associated with many concerns of consumers and authorities regarding environmental and health related issues and may result in fungicide resistance, the development of green alternatives is gaining more attention.

Impact of fining agents on Swiss Pinot noir red wines

In the context of climate change, excessive bitterness and astringency in wines have become increasingly prevalent. While variety selection and viticultural practices offer long-term solutions, they require considerable time before yielding practical results. In contrast, fining remains an accessible and immediate tool for winemakers.