Terroir 2010 banner
IVES 9 IVES Conference Series 9 Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Abstract

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness of this technique under the semi-arid climatic conditions of the Utiel- Requena D. O. (Valencia, south-east Spain) with the cv. Tempranillo. In deficit drip irrigated vines, planted in north- south oriented rows with vertical shoot positioning, four treatments were applied during 2008 and 2009. Control (C), non-defoliated vines, were compared with defoliation performed either just before anthesis (phenological stage H, treatment ED), or at fruit set (phenological stage J, treatment LD). In both defoliation treatments leaves from the first 6 nodes, including laterals, were removed. In a fourth treatment, only the leaves facing east from the first 8 nodes were removed at phenological stage H (EED). Sixteen vines per treatment were randomly selected within the vineyard. In the first season, as an average for all defoliation treatments yield was reduced 21 % by leaf pulling. In the second season, there was a heavier reduction in yield (41 %). Flower and berry number per cluster were similar in 2008, but in 2009 flower number decreased for ED, and berry number for ED and LD. In both years, lower berry weights at harvest were obtained in all defoliation treatments. Fruit composition was also modified by early-defoliation. For grapes harvested at the same date, treatment LD increased sugar content in 2009.The malic acid concentration decreased for all defoliation treatments in 2008, and the tartaric acid levels increased for all defoliation treatments in both years. Total acidity decreased for ED and LD in both years, though significantly only in 2008, when it decreased in proportion to the intensity of defoliation. Both ED, and particularly LD, improved berry composition, increasing the concentration of total phenolics, anthocyanins and tannins. The synthesis of phenolic substances was instead not increased by leaf pulling. Overall results indicate that defoliation carried out at fruit set is the most effective treatment to improve berry phenolic concentration and soluble solids. However, growers should take into account the important yield penalty due to defoliation, particularly in the mid-term. In addition, a decrease in malic acid concentration could be also detrimental during wine-making. This indicates that the early defoliation technique needs to be used with caution in the semi-arid and warm terroirs.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Risco, D. Pérez, A. Yeves, J.R. Castel, D.S. Intrigliolo

I.V.I.A. Ctra. Moncada-Naquera km.4.5. 46113. Moncada, Valencia, Spain

Contact the author

Keywords

Fruit set, yield, total soluble solids, malic acid, phenolics

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Qualitative modelling of factors influencing the development of Black rot, for the prediction of damage to bunches

Vines are one of the most pesticide-intensive crops in France, and reducing their use is a major challenge for both the environment and human health.

Sustainable vineyard management at the regional scale: insights from a Swiss winegrowing region

Swiss wine producers are faced to high production costs and low-priced wine imports.

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6.