Terroir 2010 banner
IVES 9 IVES Conference Series 9 Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

Abstract

In the old-world viticulture, there is a common but most often not scientifically proved consideration that supplemental irrigation should detrimentally affect berry and wine composition. In the semi-arid and warm climate of in-land Valencia we tested the hypothesis that deficit irrigation might, not only improve yield, but also fruit composition. The experiment was performed with Cabernet Sauvignon vines at the Celler del Roure SL vineyard, located in the D.O. Valencia. Rainfed vines were compared with three different post-veraison irrigation regimes with water application at either 10, 20, or 30% of reference evapotranspiration, resulting in water application of 26, 34 and 57, mm respectively. The experimental design was a randomised block with three replicates per treatment and 308 experimental vines per experimental plot. The experiment was conducted in the very dry and warm 2009 season, with substantial no rainfall from august up to harvest and average temperature during ripening of 24ºC. Rain-fed vines experienced quite severe plant water stress with an average midday stem water potential of -1.45 MPa. Supplemental irrigation improved plant water status and increased yield in proportion to the amount of water applied mostly because irrigation avoided berry and whole clusters dehydration that occurred in the rainfed vines during ripening. The most important effect of irrigation was to avoid the excessive increase in berry sugar content that, at the right phenolic ripening time, reached in the rainfed treatment up to 16.5º of probable alcohol. Irrigation did not affect must acidity and improved berry quality determined with a berry tasting panel. In addition the supplemental irrigation did not decrease total berry phenolic and anthocyanin potential. On the other hand irrigation slightly decreased the extractable values. This suggests that different maceration procedures should be applied depending on grape origin. Under very dry and warm seasons, irrigation can be used to mitigate the negative effect of low plant water status on berry dehydration and unbalanced ripening.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Gómez (1), J. Ortega (2), I. Álvarez (3), M.J. García-Esparza (3), D. S. Intrigliolo (4)

(1) Tresge Wine Consulting S.L., Ctra. Malilla 25-20, 46026 Valencia, Spain
(2) Celler del Roure SL. , Ctra. Les Alcusses, Km 2.5, 46640 Moixent, Valencia, Spain
(3) Universidad Politécnica de Valencia. Dept Tecnología de los Alimento, Camino de Vera s/n, Valencia, Spain
(4) Instituto Valenciano Investigaciones Agrarias. Centro Agricultura Sostenible. Apartado oficial 46113, Moncada, Valencia, Spain

Contact the author

Keywords

Deficit irrigation, phenolics, total soluble solids, yield

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration.

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues.

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

The impact of differences in soil texture within a vineyard on vine development and wine quality

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances.