Terroir 2010 banner
IVES 9 IVES Conference Series 9 Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

Abstract

In the old-world viticulture, there is a common but most often not scientifically proved consideration that supplemental irrigation should detrimentally affect berry and wine composition. In the semi-arid and warm climate of in-land Valencia we tested the hypothesis that deficit irrigation might, not only improve yield, but also fruit composition. The experiment was performed with Cabernet Sauvignon vines at the Celler del Roure SL vineyard, located in the D.O. Valencia. Rainfed vines were compared with three different post-veraison irrigation regimes with water application at either 10, 20, or 30% of reference evapotranspiration, resulting in water application of 26, 34 and 57, mm respectively. The experimental design was a randomised block with three replicates per treatment and 308 experimental vines per experimental plot. The experiment was conducted in the very dry and warm 2009 season, with substantial no rainfall from august up to harvest and average temperature during ripening of 24ºC. Rain-fed vines experienced quite severe plant water stress with an average midday stem water potential of -1.45 MPa. Supplemental irrigation improved plant water status and increased yield in proportion to the amount of water applied mostly because irrigation avoided berry and whole clusters dehydration that occurred in the rainfed vines during ripening. The most important effect of irrigation was to avoid the excessive increase in berry sugar content that, at the right phenolic ripening time, reached in the rainfed treatment up to 16.5º of probable alcohol. Irrigation did not affect must acidity and improved berry quality determined with a berry tasting panel. In addition the supplemental irrigation did not decrease total berry phenolic and anthocyanin potential. On the other hand irrigation slightly decreased the extractable values. This suggests that different maceration procedures should be applied depending on grape origin. Under very dry and warm seasons, irrigation can be used to mitigate the negative effect of low plant water status on berry dehydration and unbalanced ripening.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Gómez (1), J. Ortega (2), I. Álvarez (3), M.J. García-Esparza (3), D. S. Intrigliolo (4)

(1) Tresge Wine Consulting S.L., Ctra. Malilla 25-20, 46026 Valencia, Spain
(2) Celler del Roure SL. , Ctra. Les Alcusses, Km 2.5, 46640 Moixent, Valencia, Spain
(3) Universidad Politécnica de Valencia. Dept Tecnología de los Alimento, Camino de Vera s/n, Valencia, Spain
(4) Instituto Valenciano Investigaciones Agrarias. Centro Agricultura Sostenible. Apartado oficial 46113, Moncada, Valencia, Spain

Contact the author

Keywords

Deficit irrigation, phenolics, total soluble solids, yield

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3

Grapevine responses to red blotch disease – a structural-functional perspective of symptomatology development and fruit quality

Red Blotch disease caused by Grapevine red blotch-associated virus (GRBaV) is a severe concern to grape growers and winemakers in major grape-growing regions worldwide. One key aspect of all viruses, including Red Blotch, is their intimate association with cell components and anomalous structures following infection. Therefore, the objective of this study was to analyze symptomatology, vine function, fruit quality and ultrastructure of various tissues and document the relationship of ultrastructural cytopathology with the GRBaV infection in Pinot Noir and Merlot employing various microscopy techniques.

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.