Terroir 2010 banner
IVES 9 IVES Conference Series 9 Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

Abstract

In the old-world viticulture, there is a common but most often not scientifically proved consideration that supplemental irrigation should detrimentally affect berry and wine composition. In the semi-arid and warm climate of in-land Valencia we tested the hypothesis that deficit irrigation might, not only improve yield, but also fruit composition. The experiment was performed with Cabernet Sauvignon vines at the Celler del Roure SL vineyard, located in the D.O. Valencia. Rainfed vines were compared with three different post-veraison irrigation regimes with water application at either 10, 20, or 30% of reference evapotranspiration, resulting in water application of 26, 34 and 57, mm respectively. The experimental design was a randomised block with three replicates per treatment and 308 experimental vines per experimental plot. The experiment was conducted in the very dry and warm 2009 season, with substantial no rainfall from august up to harvest and average temperature during ripening of 24ºC. Rain-fed vines experienced quite severe plant water stress with an average midday stem water potential of -1.45 MPa. Supplemental irrigation improved plant water status and increased yield in proportion to the amount of water applied mostly because irrigation avoided berry and whole clusters dehydration that occurred in the rainfed vines during ripening. The most important effect of irrigation was to avoid the excessive increase in berry sugar content that, at the right phenolic ripening time, reached in the rainfed treatment up to 16.5º of probable alcohol. Irrigation did not affect must acidity and improved berry quality determined with a berry tasting panel. In addition the supplemental irrigation did not decrease total berry phenolic and anthocyanin potential. On the other hand irrigation slightly decreased the extractable values. This suggests that different maceration procedures should be applied depending on grape origin. Under very dry and warm seasons, irrigation can be used to mitigate the negative effect of low plant water status on berry dehydration and unbalanced ripening.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Gómez (1), J. Ortega (2), I. Álvarez (3), M.J. García-Esparza (3), D. S. Intrigliolo (4)

(1) Tresge Wine Consulting S.L., Ctra. Malilla 25-20, 46026 Valencia, Spain
(2) Celler del Roure SL. , Ctra. Les Alcusses, Km 2.5, 46640 Moixent, Valencia, Spain
(3) Universidad Politécnica de Valencia. Dept Tecnología de los Alimento, Camino de Vera s/n, Valencia, Spain
(4) Instituto Valenciano Investigaciones Agrarias. Centro Agricultura Sostenible. Apartado oficial 46113, Moncada, Valencia, Spain

Contact the author

Keywords

Deficit irrigation, phenolics, total soluble solids, yield

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

Ancient and recent construction of Terroirs

The local wine as an area identified and recognized is a complex socio-historical reality that calls an effort of observation and theoretical reflection using various social sciences

Un “GIS” agronomico per l’area a DOC dei Colli Euganei

L’area a “Denominazione di Origine Controllata Colli Euganei”, riconosciuta con Dpr 13 agosto 1969, è situata a sud-ovest della Provincia di Padova (fig. 1) ed è costituita da un sis­tema collinare di nuclei vulcanici evolutosi morfologicamente.

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.